Skip to main content
Log in

Positron emission tomography imaging in neurological disorders

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) is a powerful tool for in vivo imaging investigations of human brain function. It provides non-invasive quantification of brain metabolism, receptor binding of various neurotransmitter systems, and alterations in regional blood flow. The use of PET in a clinical setting is still limited due to the high costs of cyclotrons and radiochemical laboratories. However, once these limitations can be bypassed, PET could aid clinical practice by providing a useful imaging technique for the diagnosis, the planning of treatment, and the prediction outcome in various neurological diseases. This review aims to explain the PET imaging technique and its applications in neurological disorders such as Parkinson’s disease, Huntington’s disease, multiple sclerosis, and dementias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Birattari C, Bonardi M, Ferrari A, Milanesi L, Silari M (1987) Biomedical applications of cyclotrons and review of commercially available models. J Med Eng Technol 11:166–176

    Article  PubMed  CAS  Google Scholar 

  2. Phelps ME (1977) Emission computed tomography. Semin Nucl Med 7:337–365

    Article  PubMed  CAS  Google Scholar 

  3. Phelps ME (2000) Positron emission tomography provides molecular imaging of biological processes. PNAS 97:9226–9233

    Article  PubMed  CAS  Google Scholar 

  4. Cherry SR, Woods RP, Hoffman EJ, Mazziotta JC (1993) Improved detection of focal cerebral blood flow changes using three-dimensional positron emission tomography. J Cereb Blood Flow Metab 13:630–638

    Article  PubMed  CAS  Google Scholar 

  5. Brix G, Zaers J, Adam LE, Bellemann ME, Ostertag H, Trojan H, Haberkorn U, Doll J, Oberdorfer F, Lorenz WJ (1997) Performance evaluation of a whole-body PET scanner using the NEMA protocol. National Electrical Manufacturers Association. J Nucl Med 38:1614–1623

    PubMed  CAS  Google Scholar 

  6. Spinks TJ, Jones T, Bloomfield PM, Bailey DL, Miller M, Hogg D, Jones WF, Vaigneur K, Reed J, Young J, Newport D, Moyers C, Casey ME, Nutt R (2000) Physical characteristics of the ECAT EXACT3D positron tomograph. Phys Med Biol 45:2601–2618

    Article  PubMed  CAS  Google Scholar 

  7. Kemp BJ, Kim C, Williams JJ, Ganin A, Lowe VJ, National Electrical Manufacturers Association (NEMA) (2006) NEMA NU 2–2001 performance measurements of an LYSO-based PET/CT system in 2D and 3D acquisition modes. J Nucl Med 47:1960–1967

    PubMed  Google Scholar 

  8. Piccini P, Pavese N, Brooks DJ (2003) Endogenous dopamine release after pharmacological challenges in Parkinson’s disease. Ann Neurol 53:647–665

    Article  PubMed  CAS  Google Scholar 

  9. de la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747–2754

    Article  PubMed  Google Scholar 

  10. Piccini P, Lindvall O, Björklund A, Brundin P, Hagell P, Ceravolo R, Oertel W, Quinn N, Samuel M, Rehncrona S, Widner H, Brooks DJ (2000) Delayed recovery of movement-related cortical function in Parkinson’s disease after striatal dopaminergic grafts. Ann Neurol 48:689–695

    Article  PubMed  CAS  Google Scholar 

  11. Sawamoto N, Piccini P, Hotton G, Pavese N, Thielemans K, Brooks DJ (2008) Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain 131:1294–1302

    Article  PubMed  Google Scholar 

  12. Goerendt IK, Messa C, Lawrence AD, Grasby PM, Piccini P, Brooks DJ, PET study (2003) Dopamine release during sequential finger movements in health and Parkinson’s disease: a PET study. Brain 126:312–325

    Article  PubMed  Google Scholar 

  13. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, Holden J, Houle S, Huang SC, Ichise M, Iida H, Ito H, Kimura Y, Koeppe RA, Knudsen GM, Knuuti J, Lammertsma AA, Laruelle M, Logan J, Maguire RP, Mintun MA, Morris ED, Parsey R, Price JC, Slifstein M, Sossi V, Suhara T, Votaw JR, Wong DF, Carson RE (2007) Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab 27:1533–1539

    Article  PubMed  CAS  Google Scholar 

  14. Lammertsma AA, Hume SP (1996) Simplified reference tissue model for PET receptor studies. Neuroimage 4:153–158

    Article  PubMed  CAS  Google Scholar 

  15. Gunn RN, Lammertsma AA, Hume SP, Cunningham VJ (1997) Parametric imaging of ligand-receptor binding in PET using a simplified reference region model. Neuroimage 6:279–287

    Article  PubMed  CAS  Google Scholar 

  16. Montgomery AJ, Thielemans K, Mehta MA, Turkheimer F, Mustafovic S, Grasby PM (2006) Correction of head movement on PET studies: comparison of methods. J Nucl Med 47:1936–1944

    PubMed  Google Scholar 

  17. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    Article  PubMed  CAS  Google Scholar 

  18. Vingerhoets FJ, Schulzer M, Calne DB, Snow BJ (1997) Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Ann Neurol 41:58–64

    Article  PubMed  CAS  Google Scholar 

  19. Broussolle E, Dentresangle C, Landais P, Garcia-Larrea L, Pollak P, Croisile B, Hibert O, Bonnefoi F, Galy G, Froment JC, Comar D (1999) The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson’s disease. J Neurol Sci 166:141–151

    Article  PubMed  CAS  Google Scholar 

  20. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    Article  PubMed  Google Scholar 

  21. Brück A, Aalto S, Rauhala E, Bergman J, Marttila R, Rinne JO (2009) A follow-up study on 6-[18F] fluoro-l-dopa uptake in early Parkinson’s disease shows nonlinear progression in the putamen. Mov Disord 24:1009–1015

    Article  PubMed  Google Scholar 

  22. Hilker R, Schweitzer K, Coburger S, Ghaemi M, Weisenbach S, Jacobs AH, Rudolf J, Herholz K, Heiss WD (2005) Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 62:378–382

    Article  PubMed  Google Scholar 

  23. Nandhagopal R, Kuramoto L, Schulzer M, Mak E, Cragg J, Lee CS, McKenzie J, McCormick S, Samii A, Troiano A, Ruth TJ, Sossi V, de la Fuente-Fernandez R, Calne DB, Stoessl AJ (2009) Longitudinal progression of sporadic Parkinson’s disease: a multi-tracer positron emission tomography study. Brain 132:2970–2979

    Article  PubMed  CAS  Google Scholar 

  24. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, Wudel J, Pal PK, de la Fuente Fernandez R, Calne DB, Stoessl AJ (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503

    Article  PubMed  CAS  Google Scholar 

  25. de la Fernández Fuente R, Sossi V, McCormick S, Schulzer M, Ruth TJ, Stoessl AJ (2009) Visualizing vesicular dopamine dynamics in Parkinson’s disease. Synapse 63:713–716

    Article  Google Scholar 

  26. Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, Jones T, Marsden CD, Frackowiak RS (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298

    Article  PubMed  CAS  Google Scholar 

  27. Salmon E, Brooks DJ, Leenders KL, Turton DR, Hume SP, Cremer JE, Jones T, Frackowiak RS (1990) A two-compartment description and kinetic procedure for measuring regional cerebral [11C]nomifensine uptake using positron emission tomography. J Cereb Blood Flow Metab 10:307–316

    Article  PubMed  CAS  Google Scholar 

  28. Tedroff J, Aquilonius SM, Laihinen A, Rinne U, Hartvig P, Anderson J, Lundqvist H, Haa paranta M, Solin O, Antoni G, Gee AD, Ullin J, Långström B (1990) Striatal kinetics of [11C]-(+)- nomifensine and 6-[18F]fluoro-L-dopa in Parkinson’s disease measured with positron emission tomography. Acta Neurol Scand 81:24–30

    Article  PubMed  CAS  Google Scholar 

  29. Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH, Ravert HT, Dannals RF (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 34:423–431

    Article  PubMed  CAS  Google Scholar 

  30. Marié RM, Barré L, Rioux P, Allain P (1995) Lecheva- lier B, Baron JC (1995) PET imaging of neocortical monoaminergic terminals in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 9:55–71

    Article  PubMed  Google Scholar 

  31. Guttman M, Burkholder J, Kish SJ, Hussey D, Wilson A, DaSilva J, Houle S (1997) [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: implications for the symptomatic threshold. Neurology 48:1578–1583

    Article  PubMed  CAS  Google Scholar 

  32. Rinne JO, Laihinen A, Ruottinen H, Ruot- salainen U, Någren K, Lehikoinen P, Oikonen V, Rinne UK (1995) Increased density of dopamine D2 receptors in the putamen, but not in the caudate nucleus in early Parkinson’s disease: a PET study with [11C]raclopride. J Neurol Sci 132:156–161

    Google Scholar 

  33. Politis M, Piccini P, Pavese N, Koh SB, Brooks DJ (2008) Evidence of dopamine dysfunction in the hypothalamus of patients with Parkinson’s disease: an in vivo 11C-raclopride PET study. Exp Neurol 214:112–116

    Article  PubMed  CAS  Google Scholar 

  34. Brooks DJ (1993) PET studies on the early and differential diagnosis of Parkinson’s disease. Neurology 43:S6–S16

    PubMed  CAS  Google Scholar 

  35. Burn DJ, Sawle GV, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57:278–284

    Article  PubMed  CAS  Google Scholar 

  36. Politis M, Wu K, Molloy S, Bain GP, Chaudhuri P, Piccini P (2010) Parkinson’s disease symptoms: the patient’s perspective. Mov Disord 25:1646–1651

    Article  PubMed  Google Scholar 

  37. Fox SH, Chuang R, Brotchie JM (2009) Serotonin and Parkinson’s disease: on movement, mood, and madness. Mov Disord 24:1255–1266

    Article  PubMed  Google Scholar 

  38. Politis M, Wu K, Loane C, Kiferle L, Molloy S, Brooks DJ, Piccini P (2010) Staging of serotonergic dysfunction in Parkinson’s disease: an in vivo 11C-DASB PET study. Neurobiol Dis 40:216–221

    Article  PubMed  CAS  Google Scholar 

  39. Politis M, Wu K, Loane C, Turkheimer FE, Molloy S, Brooks DJ, Piccini P (2010) Depressive symptoms in PD correlate with higher 5-HTT binding in raphe and limbic structures. Neurology 75:1920–1927

    Article  PubMed  CAS  Google Scholar 

  40. Politis M, Loane C, Wu K, Brooks DJ, Piccini P (2011) Serotonergic mediated body mass index changes in Parkinson’s disease. Neurobiol Dis 43:609–615

    Article  PubMed  CAS  Google Scholar 

  41. O’Sullivan SS, Wu K, Politis M, Lawrence AD, Evans AH, Bose SK, Djamshidian A, Lees AJ, Piccini P (2011) Cue-induced striatal dopamine release in Parkinson’s disease-associated impulsive-compulsive behaviours. Brain 134:969–978

    Article  PubMed  Google Scholar 

  42. Lindvall O, Björklund A (2004) Cell therapy in Parkinson’s disease. NeuroRx 1:382–393

    Article  PubMed  Google Scholar 

  43. Politis M (2011) Optimizing functional imaging protocols for assessing the outcome of fetal cell transplantation in Parkinson’s disease. BMC Med 9:50

    Article  PubMed  Google Scholar 

  44. Politis M, Wu K, Loane C, Quinn NP, Brooks DJ, Rehncrona S, Bjorklund A, Lindvall O, Piccini P (2010) Serotonergic neurons mediate dyskinesia side effects in Parkinson’s patients with neural transplants. Sci Transl Med 2:38–46

    Google Scholar 

  45. Politis M, Oertel WH, Wu K, Quinn NP, Pogarell O, Brooks DJ, Bjorklund A, Lindvall O, Piccini P (2011) Graft-induced dyskinesias in Parkinson’s disease: high striatal serotonin/dopamine transporter ratio. Mov Disord 26:1997–2003

    Article  PubMed  Google Scholar 

  46. Politis M (2010) Dyskinesias after neural transplantation in Parkinson’s disease: what do we know and what is next? BMC Med 8:80

    Article  PubMed  Google Scholar 

  47. Ginovart N, Lundin A, Farde L, Halldin C, Bäckman L, Swahn CG, Pauli S, Sedvall G (1997) PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120:503–514

    Article  PubMed  Google Scholar 

  48. Antonini A, Leenders KL, Eidelberg D (1998) [11C]raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann Neurol 43:253–255

    Article  PubMed  CAS  Google Scholar 

  49. Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LH, Sahakian B, Hodges JR, Rosser AE, Wood NW, Brooks DJ (1999) Huntington’s disease progression PET and clinical observations. Brain 122:2353–2363

    Article  PubMed  Google Scholar 

  50. Lawrence AD, Weeks RA, Brooks DJ, Andrews TC, Watkins LH, Harding AE, Robbins TW, Sahakian BJ (1998) The relationship between striatal dopamine receptor binding and cognitive performance in Huntington’s disease. Brain 121:1343–1355

    Article  PubMed  Google Scholar 

  51. Pavese N, Andrews TC, Brooks DJ, Ho AK, Rosser AE, Barker RA, Robbins TW, Sahakian BJ, Dunnett SB, Piccini P (2003) Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain 126:1127–1135

    Article  PubMed  Google Scholar 

  52. Pavese N, Politis M, Tai YF, Barker RA, Tabrizi SJ, Mason SL, Brooks DJ, Piccini P (2010) Cortical dopamine dysfunction in symptomatic and premanifest Huntington’s disease gene carriers. Neurobiol Dis 37:356–361

    Article  PubMed  CAS  Google Scholar 

  53. Pavese N, Gerhard A, Tai YF, Ho AK, Turkheimer F, Barker RA, Brooks DJ, Piccini P (2006) Microglial activation correlates with severity in Huntington disease: a clinical and PET study. Neurology 66:1638–1643

    Article  PubMed  CAS  Google Scholar 

  54. Tai YF, Pavese N, Gerhard A, Tabrizi SJ, Barker RA, Brooks DJ, Piccini P (2007) Microglial activation in presymptomatic Huntington’s disease gene carriers. Brain 130:1759–1766

    Article  PubMed  Google Scholar 

  55. Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P (2008) Hypothalamic involvement in Huntington’s disease: an in vivo PET study. Brain 131:2860–2869

    Article  PubMed  Google Scholar 

  56. Politis M, Pavese N, Tai YF, Kiferle L, Mason SL, Brooks DJ, Tabrizi SJ, Barker RA, Piccini P (2011) Microglial activation in regions related to cognitive function predicts disease onset in Huntington’s disease: a multimodal imaging study. Hum Brain Mapp 32:258–270

    Article  PubMed  Google Scholar 

  57. Weeks RA, Ceballos-Baumann A, Piccini P, Boecker H, Harding AE, Brooks DJ (1997) Cortical control of movement in Huntington’s disease, A PET activation study. Brain 120:1569–1578

    Article  PubMed  Google Scholar 

  58. Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, Antonini A, Eidelberg D (2001) Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG PET study. J Nucl Med 42:1591–1595

    PubMed  CAS  Google Scholar 

  59. Künig G, Leenders KL, Sanchez-Pernaute R, Antonini A, Vontobel P, Verhagen A, Günther I (2000) Benzodiazepine receptor binding in Huntington’s disease: [11C]flumazenil uptake measured using positron emission tomography. Ann Neurol 47:644–648

    Article  PubMed  Google Scholar 

  60. Furtado S, Sossi V, Hauser RA, Samii A, Schulzer M, Murphy CB, Freeman TB, Stoessl AJ (2005) Positron emission tomography after fetal transplantation in Huntington’s disease. Ann Neurol 58:331–337

    Article  PubMed  Google Scholar 

  61. Gaura V, Bachoud-Lévi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, Brugières P, Mangin JF, Boissé MF, Palfi S, Cesaro P, Samson Y, Hantraye P, Peschanski M, Remy P (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 127:65–72

    Article  PubMed  Google Scholar 

  62. Kiferle L, Politis M, Muraro PA, Piccini P (2011) Positron emission tomography imaging in multiple sclerosis-current status and future applications. Eur J Neurol 18:226–231

    Article  PubMed  CAS  Google Scholar 

  63. Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R (2000) The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 123:2321–2337

    Article  PubMed  Google Scholar 

  64. Debruyne JC, Versijpt J, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2003) PET visualization of microglia in multiple sclerosis patients using [11C]PK11195. Eur J Neurol 10:257–264

    Article  PubMed  CAS  Google Scholar 

  65. Versijpt J, Debruyne JC, Van Laere KJ, De Vos F, Keppens J, Strijckmans K, Achten E, Slegers G, Dierckx RA, Korf J, De Reuck JL (2005) Microglial imaging with positron emission tomography and atrophy measurements with magnetic resonance imaging in multiple sclerosis: a correlative study. Mult Scler 11:127–134

    Article  PubMed  CAS  Google Scholar 

  66. Politis M, Giannetti P, Su P, Turkheimer F, Keihaninejad S, Wu K, Waldman A, Malik O, Matthews PM, Reynolds R, Nicholas R, Piccini P (2012) Increased PK11195 PET binding in the cortex of MS patients correlates with disability. Neurology (in press)

  67. Pozzilli C, Fieschi C, Perani D, Paulesu E, Comi G, Bastianello S, Bernardi S, Bettinardi V, Bozzao L, Canal N et al (1992) Relationship between corpus callosum atrophy and cerebral metabolic asymmetries in multiple sclerosis. J Neurol Sci 112:51–57

    Article  PubMed  CAS  Google Scholar 

  68. Paulesu E, Perani D, Fazio F, Comi G, Pozzilli C, Martinelli V, Filippi M, Bettinardi V, Sirabian G, Passafiume D, Anzini A, Lenzi GL, Canal N, Fieschi C (1996) Functional basis of memory impairment in multiple sclerosis: a[18F]FDG PET study. Neuroimage 4:87–96

    Article  PubMed  CAS  Google Scholar 

  69. Roelcke U, Kappos L, Lechner-Scott J, Brunnschweiler H, Huber S, Ammann W, Plohmann A, Dellas S, Maguire RP, Missimer J, Radü EW, Steck A, Leenders KL (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48:1566–1571

    Article  PubMed  CAS  Google Scholar 

  70. Blinkenberg M, Jensen CV, Holm S, Paulson OB, Sørensen PS (1999) A longitudinal study of cerebral glucose metabolism, MRI, and disability in patients with MS. Neurology 53:149–153

    Article  PubMed  CAS  Google Scholar 

  71. Sun X, Tanaka M, Kondo S, Okamoto K, Hirai S (1998) Clinical significance of reduced cerebral metabolism in multiple sclerosis: a combined PET and MRI study. Ann Nucl Med 12:89–94

    Article  PubMed  CAS  Google Scholar 

  72. Stankoff B, Freeman L, Aigrot MS, Chardain A, Dollé F, Williams A, Galanaud D, Armand L, Lehericy S, Lubetzki C, Zalc B, Bottlaender M (2011) Imaging central nervous system myelin by positron emission tomography in multiple sclerosis using [methyl-¹¹C]-2-(4′-methylaminophenyl)-6-hydroxybenzothiazole. Ann Neurol 69:673–680

    Article  PubMed  CAS  Google Scholar 

  73. Wimo A, Winblad B, Aguero-Torres H, von Strauss E (2003) The magnitude of dementia occurrence in the world. Alzheimer Dis Assoc Disord 17:63–67

    Article  PubMed  Google Scholar 

  74. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, Pirraglia E, De Santi S, Reisberg B, Wisniewski T, de Leon MJ (2009) FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging 36:811–822

    Article  PubMed  CAS  Google Scholar 

  75. Mosconi L (2005) Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 32:486–510

    Article  PubMed  CAS  Google Scholar 

  76. Jagust W, Reed B, Mungas D, Ellis W, Decarli C (2007) What does fluorodeoxyglucose PET imaging add to a clinical diagnosis of dementia? Neurology 69:871–877

    Article  PubMed  CAS  Google Scholar 

  77. Tartaglia MC, Rosen HJ, Miller BL (2011) Neuroimaging in dementia. Neurotherapeutics 8:82–92

    Article  PubMed  Google Scholar 

  78. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging 30:1104–1113

    Article  PubMed  Google Scholar 

  79. Drzezga A, Grimmer T, Riemenschneider M, Lautenschlager N, Siebner H, Alexopoulus P, Minoshima S, Schwaiger M, Kurz A (2005) Prediction of individual clinical outcome in MCI by means of genetic assessment and (18)F-FDG PET. J Nucl Med 46:1625–1632

    PubMed  CAS  Google Scholar 

  80. Mosconi L, Brys M, Glodzik-Sobanska L, De Santi S, Rusinek H, de Leon MJ (2007) Early detection of Alzheimer’s disease using neuroimaging. Exp Gerontol 42:129–138

    Article  PubMed  Google Scholar 

  81. Rabinovici GD, Jagust WJ (2009) Amyloid imaging in aging and dementia: testing the amyloid hypothesis in vivo. Behav Neurol 21:117–128

    PubMed  CAS  Google Scholar 

  82. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, Holt DP, Meltzer CC, DeKosky ST, Mathis CA (2005) Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 25:1528–1547

    Article  PubMed  CAS  Google Scholar 

  83. Archer HA, Edison P, Brooks DJ, Barnes J, Frost C, Yeatman T, Fox NC, Rossor MN (2006) Amyloid load and cerebral atrophy in Alzheimer’s disease: an 11C-PIB positron emission tomography study. Ann Neurol 60:145–147

    Article  PubMed  Google Scholar 

  84. Kemppainen NM, Aalto S, Wilson IA, Någren K, Helin S, Brück A, Oikonen V, Kailajärvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO (2006) Voxel-based analysis of PET amyloid ligand [11C]PIB uptake in Alzheimer disease. Neurology 67:1575–1580

    Article  PubMed  CAS  Google Scholar 

  85. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, Klunk WE, Mathis CA, DeKosky ST, Morris JC (2006) [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology 67:446–452

    Article  PubMed  CAS  Google Scholar 

  86. Rowe CC, Ellis KA, Rimajova M, Bourgeat P, Pike KE, Jones G, Fripp J, Tochon-Danguy H, Morandeau L, O’Keefe G, Price R, Raniga P, Robins P, Acosta O, Lenzo N, Szoeke C, Salvado O, Head R, Martins R, Masters CL, Ames D, Villemagne VL (2010) Amyloid imaging results from the Australian Imaging, Biomarkers and Lifestyle (AIBL) study of aging. Neurobiol Aging 31:1275–1283

    Article  PubMed  Google Scholar 

  87. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Långström B, Nordberg A (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29:1456–1465

    Article  PubMed  CAS  Google Scholar 

  88. Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Någren K, Bullock R, Walker Z, Kennedy A, Fox NC, Rossor MN, Rinne JO, Brooks DJ (2009) Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology 73:754–760

    Article  PubMed  CAS  Google Scholar 

  89. Jack CR Jr, Wiste HJ, Vemuri P, Weigand SD, Senjem ML, Zeng G, Bernstein MA, Gunter JL, Pankratz VS, Aisen PS, Weiner MW, Petersen RC, Shaw LM, Trojanowski JQ, Knopman DS, Initiative Alzheimer’s Disease Neuroimaging (2010) Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer’s disease. Brain 133:3336–3348

    Article  PubMed  Google Scholar 

  90. Grimmer T, Henriksen G, Wester HJ, Förstl H, Klunk WE, Mathis CA, Kurz A, Drzezga A (2009) Clinical severity of Alzheimer’s disease is associated with PIB uptake in PET. Neurobiol Aging 30:1902–1909

    Article  PubMed  CAS  Google Scholar 

  91. Villemagne VL, Pike KE, Darby D, Maruff P, Savage G, Ng S, Ackermann U, Cowie TF, Currie J, Chan SG, Jones G, Tochon-Danguy H, O’Keefe G, Masters CL, Rowe CC (2008) Abeta deposits in older non-demented individuals with cognitive decline are indicative of preclinical Alzheimer’s disease. Neuropsychologia 46:1688–1697

    Article  PubMed  CAS  Google Scholar 

  92. Edison P, Rowe CC, Rinne JO, Ng S, Ahmed I, Kemppainen N, Villemagne VL, O’Keefe G, Någren K, Chaudhury KR, Masters CL, Brooks DJ (2008) Amyloid load in Parkinson’s disease dementia and Lewy body dementia measured with [11C]PIB positron emission tomography. J Neurol Neurosurg Psychiatry 79:1331–1338

    Article  PubMed  CAS  Google Scholar 

  93. Maetzler W, Reimold M, Liepelt I, Solbach C, Leyhe T, Schweitzer K, Eschweiler GW, Mittelbronn M, Gaenslen A, Uebele M, Reischl G, Gasser T, Machulla HJ, Bares R, Berg D (2008) [11C]PIB binding in Parkinson’s disease dementia. Neuroimage 39:1027–1033

    Article  PubMed  Google Scholar 

  94. Drzezga A, Grimmer T, Henriksen G, Stangier I, Perneczky R, Diehl-Schmid J, Mathis CA, Klunk WE, Price J, DeKosky S, Wester HJ, Schwaiger M, Kurz A (2008) Imaging of amyloid plaques and cerebral glucose metabolism in semantic dementia and Alzheimer’s disease. Neuroimage 39:619–633

    Article  PubMed  Google Scholar 

  95. Engler H, Santillo AF, Wang SX, Lindau M, Savitcheva I, Nordberg A, Lannfelt L, Långström B, Kilander L (2008) In vivo amyloid imaging with PET in frontotemporal dementia. Eur J Nucl Med Mol Imaging 35:100–106

    Article  PubMed  Google Scholar 

  96. Koole M, Lewis DM, Buckley C, Nelissen N, Vandenbulcke M, Brooks DJ, Vandenberghe R, Van Laere K (2009) Whole-body biodistribution and radiation dosimetry of 18F-GE067: a radioligand for in vivo brain amyloid imaging. J Nucl Med 50:818–822

    Article  PubMed  CAS  Google Scholar 

  97. Choi SR, Golding G, Zhuang Z, Zhang W, Lim N, Hefti F, Benedum TE, Kilbourn MR, Skovronsky D, Kung HF (2009) Preclinical properties of 18F-AV-45: a PET agent for Abeta plaques in the brain. J Nucl Med 50:1887–1894

    Article  PubMed  CAS  Google Scholar 

  98. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, Tochon-Danguy H, Chan G, Berlangieri SU, Jones G, Dickinson-Rowe KL, Kung HP, Zhang W, Kung MP, Skovronsky D, Dyrks T, Holl G, Krause S, Friebe M, Lehman L, Lindemann S, Dinkelborg LM, Masters CL, Villemagne VL (2008) Imaging of amyloid beta in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol 7:129–135

    Article  PubMed  CAS  Google Scholar 

  99. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB (2001) In vivo measurement of activated microglia in dementia. Lancet 358:461–467

    Article  PubMed  CAS  Google Scholar 

  100. Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A, Fox N, Rossor M, Brooks DJ (2009) Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 72:56–62

    Article  PubMed  CAS  Google Scholar 

  101. Wiley CA, Lopresti BJ, Venneti S, Price J, Klunk WE, DeKosky ST, Mathis CA (2009) Carbon 11-labeled Pittsburgh Compound B and carbon 11-labeled (R)-PK11195 positron emission tomographic imaging in Alzheimer disease. Arch Neurol 66:60–67

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Our own research is supported by the Michael J Fox Foundation for Parkinson’s Research USA, the Parkinson’s UK and the Cure Huntington’s Disease Initiative Foundation USA.

Conflicts of interest

Nothing to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Politis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politis, M., Piccini, P. Positron emission tomography imaging in neurological disorders. J Neurol 259, 1769–1780 (2012). https://doi.org/10.1007/s00415-012-6428-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-012-6428-3

Keywords

Navigation