Skip to main content

Advertisement

Log in

Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI

  • ORIGINAL COMMUNICATION
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Background

Early pathological involvement of specific medial temporal lobe areas is characteristic for Alzheimer’s disease (AD).

Objective

To determine the extent of regional medial temporal lobe atrophy, including hippocampus, amygdala, and entorhinal, perirhinal, and parahippocampal cortices in mild AD patients and healthy controls, and to compare diagnostic accuracy across volumetric markers.

Methods

We studied 34 patients with clinically probable AD and 22 healthy elderly control subjects. Regional volumetric measures were obtained from volumetric T1–weighted MRI scans after accounting for global brain atrophy using affine transformation into standard space.

Results

Volumes of medial temporal lobe structures were significantly smaller in AD patients than in controls with exception of the left entorhinal cortex. The degree of atrophy was comparable between all structures. Diagnostic accuracy (number of correctly allocated cases divided by number of all cases) was highest for the right parahippocampal cortex with 85%, but only slightly lower for the right hippocampus and right entorhinal cortex with 82% and 84%. Using a linear combination of markers, the unilateral volumes of the right hippocampus, parahippocampal cortex and perirhinal cortex yielded an accuracy of 93%.

Conclusion

Extent of atrophy is similar between the different regions of the medial temporal lobe in mild AD.Volume measurements of medial temporal lobe structures in addition to the hippocampus only yield improved diagnostic accuracy if a combination of these structures is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jack CR Jr, Slomkowski M, Gracon S, Hoover TM, Felmlee JP, Stewart K, Xu Y, Shiung M, O’Brien PC, Cha R, Knopman D, Petersen RC (2003) MRI as a biomarker of disease progression in a therapeutic trial of milameline for AD. Neurology 60:253–260

    PubMed  Google Scholar 

  2. Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC, Edland SD, Smith GE, Boeve BF, Tangalos EG, Kokmen E, Petersen RC (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757

    PubMed  Google Scholar 

  3. Chetelat G, Baron JC (2003) Early diagnosis of Alzheimer’s disease: contribution of structural neuroimaging. Neuroimage 18:525–541

    Article  PubMed  Google Scholar 

  4. Pantel J, Schroder J, Schad LR, Friedlinger M, Knopp MV, Schmitt R, Geissler M, Bluml S, Essig M, Sauer H (1997) Quantitative magnetic resonance imaging and neuropsychological functions in dementia of the Alzheimer type. Psychol Med 27:221–229

    Article  PubMed  CAS  Google Scholar 

  5. Hampel H, Teipel SJ, Bayer W, Alexander GE, Schwarz R, Schapiro MB, Rapoport SI, Moller HJ (2002) Age transformation of combined hippocampus and amygdala volume improves diagnostic accuracy in Alzheimer’s disease. J Neurol Sci 194:15–19

    Article  PubMed  Google Scholar 

  6. Lehericy S, Baulac M, Chiras J, Pierot L, Martin N, Pillon B, Deweer B, Dubois B, Marsault C (1994) Amygdalohippocampal MR volume measurements in the early stages of Alzheimer’s disease. Am J Neuroradiol 15:927–937

    Google Scholar 

  7. Mann DMA (1992) The neuropathology of the amygdala in ageing and in dementia. In: Aggleton J (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. New York:Wiley, pp 575–593

    Google Scholar 

  8. Herzog AG, Kemper TL (1980) Amygdaloid changes in aging and dementia. Arch Neurology 37:625–629

    CAS  Google Scholar 

  9. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58:1395–1402

    Article  PubMed  CAS  Google Scholar 

  10. Ball MJ (1977) Neuronal loss, neurofibrillary tangles and granulovacuolar degeneration in the hippocampus with ageing and dementia. A quantitative study. Acta Neuropathol (Berl) 37:111–118

    Article  PubMed  CAS  Google Scholar 

  11. West MJ, Coleman PD, Flood DG, Troncoso JC (1994) Differences in the pattern of hippocampal neuronal loss in normal ageing and Alzheimer’s disease. Lancet 344:769–772

    Article  PubMed  CAS  Google Scholar 

  12. Simic G, Kostovic I, Winblad B, Bogdanovic N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379:482–494

    Article  PubMed  CAS  Google Scholar 

  13. Kordower JH, Chu Y, Stebbins GT, DeKosky ST, Cochran EJ, Bennett D, Mufson EJ (2001) Loss and atrophy of layer II entorhinal cortex neurons in elderly people with mild cognitive impairment. Ann Neurol 49:202–213

    Article  PubMed  CAS  Google Scholar 

  14. Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet–Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52:1158–1165

    PubMed  CAS  Google Scholar 

  15. Jack CRJ, Petersen RC, Xu YC, Waring SC, PC, OB, Tangalos EG, Smith GE, Ivnik RJ, Kokmen E (1997) Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 49:786–794

    PubMed  Google Scholar 

  16. Krasuski JS, Alexander GE, Horwitz B, Daly EM, Murphy DGM, Rapoport SI, Schapiro MB (1998) Volumes of medial temporal lobe structures in patients with Alzheimer’s disease and mild cognitive impairment (and in healthy controls). Biol Psychiatry 43:60–68

    Article  PubMed  CAS  Google Scholar 

  17. Chan D, Fox NC, Scahill RI, Crum WR, Whitwel JL, Leschziner G, Rossor AM, Stevens JM, Cipolotti L, Rossor M (2001) Patterns of temporal lobe atrophy in semantic dementia and Alzheimer’s disease. Ann Neurol 49:433–442

    Article  PubMed  CAS  Google Scholar 

  18. Juottonen K, Laakso MP, Insausti R, Lehtovirta M, Pitkanen A, Partanen K, Soininen H (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 19:15–22

    Article  PubMed  CAS  Google Scholar 

  19. Frisoni GB, Laakso MP, Beltramello A, Geroldi C, Bianchetti A, Soininen H, Trabucchi M (1999) Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease. Neurology 52:91–100

    PubMed  CAS  Google Scholar 

  20. Juottonen K, Laakso MP, Partanen K, Soininen H (1999) Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. Am J Neuroradiol 20:139–144

    PubMed  CAS  Google Scholar 

  21. Xu Y, Jack CR Jr, O’Brien PC, Kokmen E, Smith GE, Ivnik RJ, Boeve BF, Tangalos RG, Petersen RC (2000) Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology 54:1760–1767

    PubMed  CAS  Google Scholar 

  22. Du AT, Schuff N, Amend D, Laakso MP, Hsu YY, Jagust WJ, Yaffe K, Kramer JH, Reed B, Norman D, Chui HC, Weiner MW (2001) Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 71:441–447

    Article  CAS  Google Scholar 

  23. Insausti R, Juottonen K, Soininen H, Insausti AM, Partanen K, Vainio P, Laakso MP, Pitkanen A (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. Am J Neuroradiol 19:659–671

    PubMed  CAS  Google Scholar 

  24. Bobinski M, de Leon MJ, Convit A, De Santi S, Wegiel J, Tarshish CY, Saint Louis LA, Wisniewski HM (1999) MRI of entorhinal cortex in mild Alzheimer’s disease. Lancet 353:38–40

    Article  PubMed  CAS  Google Scholar 

  25. Pruessner JC, Koehler S, Crane J, Pruessner M, Lord C, Byrne A, Kabani N, Collins DL, Evans AC (2002) Volumetry of temporopolar, perirhinal, entorhinal, and parahippocampal cortex from high–resolution MR images: considering the variability of the collateral sulcus. Cerebral Cortex 12:1342–1353

    Article  PubMed  Google Scholar 

  26. Pruessner JC, Li LM, Serles W, Pruessner M, Collins DL, Kabani N, Lupien S, Evans AC (2000) Volumetry of hippocampus and amygdala with highresolution MRI and three–dimensional analysis software: minimizing the discrepancies between laboratories. Cerebral Cortex 10:433–442

    Article  PubMed  CAS  Google Scholar 

  27. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS–ADRDA Work Group under the auspices of the Department of Health and Human Services Task Force on Alzheimer’s disease. Neurology 34:939–944

    PubMed  CAS  Google Scholar 

  28. Folstein MF, Folstein SE, McHugh PR (1975) Mini–mental–state: a practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  29. Morris JC, Heyman A, Mohs RC, Hughes JP, van Belle G, Fillenbaum G, Mellits ED, Clark C (1989) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology 39:1159–1165

    PubMed  CAS  Google Scholar 

  30. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  PubMed  CAS  Google Scholar 

  31. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205

    PubMed  CAS  Google Scholar 

  32. Talairach J, Tournoux P (1988) Co– Planar Stereotaxic Atlas of the Human Brain. New York: Thieme

    Google Scholar 

  33. de Leon MJ, Convit A, DeSanti S, Bobinski M, George AE, Wisniewski HM, Rusinek H, Carroll R, Saint Louis LA (1997) Contribution of structural neuroimaging to the early diagnosis of Alzheimer’s disease. Int Psychogeriatr 9(Suppl 1):183–190

    Article  PubMed  Google Scholar 

  34. Cuenod C–A, Denys A, Michot J–L, Jehenson P, Forette F, Kaplan D, Syrota A, Boller F (1993) Amygdala atrophy in Alzheimer’s disease. An in vivo magnetic resonance imaging study. Arch Neurol 50:941–945

    PubMed  CAS  Google Scholar 

  35. Mizuno K, Wakai M, Takeda A, Sobue G (2000) Medial temporal atrophy and memory impairment in early stage of Alzheimer’s disease: an MRI volumetric and memory assessment study. J Neurol Sci 173:18–24

    Article  PubMed  CAS  Google Scholar 

  36. Callen DJ, Black SE, Gao F, Caldwell CB, Szalai JP (2001) Beyond the hippocampus: MRI volumetry confirms widespread limbic atrophy in AD. Neurology 57:1669–1674

    PubMed  CAS  Google Scholar 

  37. Ouchi Y, Nobezawa S, Okada H, Yoshikawa E, Futatsubashi M, Kaneko M (1998) Altered glucose metabolism in the hippocampal head in memory impairment. Neurology 51:136–142

    PubMed  CAS  Google Scholar 

  38. Smith CD, Malcein M, Meurer K, Schmitt FA, Markesbery WR, Pettigrew LC (1999) MRI temporal lobe volume measures and neuropsychologic function in Alzheimer’s disease. J Neuroimaging 9:2–9

    PubMed  CAS  Google Scholar 

  39. Golebiowski M, Barcikowska M, Pfeffer A (1999) Magnetic resonance imagingbased hippocampal volumetry in patients with dementia of the Alzheimer type. Dement Geriatr Cogn Disord 10:284–288

    Article  PubMed  CAS  Google Scholar 

  40. Pearlson GD, Harris GJ, Powers RE, Barta PE, Camargo EE, Chase GA, Noga JT, Tune LE (1992) Quantitative changes in mesial temporal volume, regional cerebral blood flow, and cognition in Alzheimer’s disease. Arch Gen Psychiatry 49:402–408

    PubMed  CAS  Google Scholar 

  41. Laakso MP, Frisoni GB, Kononen M, Mikkonen M, Beltramello A, Geroldi C, Bianchetti A, Trabucchi M, Soininen H, Aronen HJ (2000) Hippocampus and entorhinal cortex in frontotemporal dementia and Alzheimer’s disease: a morphometric MRI study. Biol Psychiatry 47:1056–1063

    Article  PubMed  CAS  Google Scholar 

  42. Killiany RJ, Gomez–Isla T, Moss M, Kikinis R, Sandor T, Jolesz F, Tanzi R, Jones K, Hyman BT, Albert MS (2000) Use of structural magnetic resonance imaging to predict who will get Alzheimer’s disease. Ann Neurol 47:430–439

    Article  PubMed  CAS  Google Scholar 

  43. Pennanen C, Kivipelto M, Tuomainen S, Hartikainen P, Hanninen T, Laakso MP, Hallikainen M, Vanhanen M, Nissinen A, Helkala EL, Vainio P, Vanninen R, Partanen K, Soininen H (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiol Aging 25:303–310

    Article  PubMed  Google Scholar 

  44. Dickerson BC, Goncharova I, Sullivan MP, Forchetti C, Wilson RS, Bennett DA, Beckett LA, deToledo–Morrell L (2001) MRI–derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiol Aging 22:747–754

    Article  PubMed  CAS  Google Scholar 

  45. Killiany RJ, Hyman BT, Gomez–Isla T, Moss MB, Kikinis R, Jolesz F, Tanzi R, Jones K, Albert MS (2002) MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology 58:1188–1196

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to St. J. Teipel MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teipel, S.J., Pruessner, J.C., Faltraco, F. et al. Comprehensive dissection of the medial temporal lobe in AD: measurement of hippocampus, amygdala, entorhinal, perirhinal and parahippocampal cortices using MRI. J Neurol 253, 794–800 (2006). https://doi.org/10.1007/s00415-006-0120-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-006-0120-4

Key words

Navigation