Skip to main content

Advertisement

Log in

Explore variation of salivary bacteria across time and geolocations

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Saliva is an informative body fluid that can be found at various crime scenes, and the salivary bacterial community has been revealed it is a potential auxiliary target for forensic identification. However, the variation of salivary bacterial community composition across time and geolocation needs to be explored. The study was designed to be carried out during the winter vacation that was across about 50 days and eight geographic locations. The high throughput sequencing was performed with the V3–V4 region of the16S rRNA gene to explore salivary bacterial community composition. An overall slight fluctuation of the salivary bacteria was observed, which primarily occurred in the relative abundance of the salivary bacterial taxa. The results of principal coordinate analysis and hierarchical clustering showed samples were clustered by the individuals. All individuals could be correctly identified with the random forest model. In summation, although the relative abundance of salivary bacteria varied across the changes of time and geolocation, the individualized characteristic of salivary bacteria remained steady, which is beneficial for the salivary bacterial application in personal identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The original contributions presented in the study are publicly available. This data can be found here: PRJNA896345.

References

  1. Cho HW, Eom YB (2021) Forensic analysis of human microbiome in skin and body fluids based on geographic location. Fronti Cell Infect Microbiol 11:695191. https://doi.org/10.3389/fcimb.2021.695191

    Article  CAS  Google Scholar 

  2. Marsh PD, Do T, Beighton D, Devine DA (2016) Influence of saliva on the oral microbiota. Periodontology 2000 70(1):80–92. https://doi.org/10.1111/prd.12098

    Article  PubMed  Google Scholar 

  3. He J, Li Y, Cao Y, Xue J, Zhou X (2015) The oral microbiome diversity and its relation to human diseases. Folia Microbiol 60(1):69–80. https://doi.org/10.1007/s12223-014-0342-2

    Article  CAS  Google Scholar 

  4. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. https://doi.org/10.1038/nature11234

    Article  ADS  CAS  Google Scholar 

  5. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI (2007) The human microbiome project. Nature 449(7164):804–810. https://doi.org/10.1038/nature06244

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  6. Schmedes SE, Sajantila A, Budowle B (2016) Expansion of microbial forensics. J Clin Microbiol 54(8):1964–1974. https://doi.org/10.1128/JCM.00046-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kennedy DM, Stanton JA, García JA, Mason C, Rand CJ, Kieser JA, Tompkins GR (2012) Microbial analysis of bite marks by sequence comparison of streptococcal DNA. PloS One 7(12):e51757. https://doi.org/10.1371/journal.pone.0051757

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  8. Leake SL, Pagni M, Falquet L, Taroni F, Greub G (2016) The salivary microbiome for differentiating individuals: proof of principle. Microbes Infect 18(6):399–405. https://doi.org/10.1016/j.micinf.2016.03.011

    Article  PubMed  CAS  Google Scholar 

  9. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science (New York, N.Y.) 326(5960):1694–1697. https://doi.org/10.1126/science.1177486

    Article  PubMed  ADS  CAS  Google Scholar 

  10. Wang S, Song F, Gu H, Wei X, Zhang K, Zhou Y, Luo H (2022) Comparative evaluation of the salivary and buccal mucosal microbiota by 16S rRNA sequencing for forensic investigations. Front Microbiol 13:777882. https://doi.org/10.3389/fmicb.2022.777882

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gül F, Karadayı S, Yurdabakan Z, Özbek T, Karadayı B (2022) Investigating changes in salivary microbiota due to dental treatment: a metagenomic analysis study for forensic purposes. Forensic Sci Int 340:111447. https://doi.org/10.1016/j.forsciint.2022.111447

    Article  PubMed  CAS  Google Scholar 

  12. Bozza S, Scherz V, Greub G, Taroni F (2022) A probabilistic approach to evaluate salivary microbiome in forensic science when the Defense says: ‘It is my twin brother.’ Forensic Sci Int Genet 57:102638. https://doi.org/10.1016/j.fsigen.2021.102638

    Article  PubMed  CAS  Google Scholar 

  13. Sedghi L, DiMassa V, Harrington A, Lynch SV, Kapila YL (2021) The oral microbiome: role of key organisms and complex networks in oral health and disease. Periodontology 2000 87(1):107–131. https://doi.org/10.1111/prd.12393

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gupta VK, Paul S, Dutta C (2017) Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol 8:1162. https://doi.org/10.3389/fmicb.2017.01162

    Article  PubMed  PubMed Central  Google Scholar 

  15. Belstrøm D, Holmstrup P, Bardow A, Kokaras A, Fiehn NE, Paster BJ (2016) Temporal stability of the salivary microbiota in oral health. PloS One 11(1):e0147472. https://doi.org/10.1371/journal.pone.0147472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Staheli JP, Boyce R, Kovarik D, Rose TM (2011) CODEHOP PCR and CODEHOP PCR primer design. Methods Mol Biol(Clifton, N.J.) 687:57–73. https://doi.org/10.1007/978-1-60761-944-4_5

    Article  CAS  Google Scholar 

  18. Wilkins D, Tong X, Leung MHY, Mason CE, Lee PKH (2021) Diurnal variation in the human skin microbiome affects accuracy of forensic microbiome matching. Microbiome 9(1):129. https://doi.org/10.1186/s40168-021-01082-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hall MW, Singh N, Ng KF, Lam DK, Goldberg MB, Tenenbaum HC, Neufeld JD, G. Beiko R, Senadheera DB. (2017) Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. NPJ Biofilms Microbiomes 3:2. https://doi.org/10.1038/s41522-016-0011-0

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mukherjee C, Beall CJ, Griffen AL, Leys EJ (2018) High-resolution ISR amplicon sequencing reveals personalized oral microbiome. Microbiome 6(1):153. https://doi.org/10.1186/s40168-018-0535-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cameron SJ, Huws SA, Hegarty MJ, Smith DP, Mur LA (2015) The human salivary microbiome exhibits temporal stability in bacterial diversity. FEMS Microbiol Ecol 91(9):091. https://doi.org/10.1093/femsec/fiv091

    Article  CAS  Google Scholar 

  22. Lazarevic V, Whiteson K, Hernandez D, François P, Schrenzel J (2010) Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 11:523. https://doi.org/10.1186/1471-2164-11-523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400. https://doi.org/10.1038/nm.4517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, Leff JW, Vázquez-Baeza Y, Gonzalez A, Knight R, Dunn RR, Fierer N (2014) Temporal variability is a personalized feature of the human microbiome. Genome Biol 15(12):531. https://doi.org/10.1186/s13059-014-0531-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Song J, Gao Y, Yin P, Li Y, Li Y, Zhang J, Su Q, Fu X, Pi H (2021) The random forest model has the best accuracy among the four pressure ulcer prediction models using machine learning algorithms. Risk Manag Healthc Policy 14:1175–1187. https://doi.org/10.2147/RMHP.S297838

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liang X, Han X, Liu C, Du W, Zhong P, Huang L, Huang M, Fu L, Liu C, Chen L (2022) Integrating the salivary microbiome in the forensic toolkit by 16S rRNA gene: potential application in body fluid identification and biogeographic inference. Int J Legal Med 136(4):975–985. https://doi.org/10.1007/s00414-022-02831-z

    Article  PubMed  Google Scholar 

  27. Toyomane K, Yokota R, Watanabe K, Akutsu T, Asahi A, Kubota S (2021) Evaluation of CRISPR diversity in the human skin microbiome for personal identification. mSystems 6(1):e01255-20. https://doi.org/10.1128/mSystems.01255-20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Schmedes SE, Woerner AE, Novroski NMM, Wendt FR, King JL, Stephens KM, Budowle B (2018) Targeted sequencing of clade-specific markers from skin microbiomes for forensic human identification. Forensic Sci Int Genet 32:50–61. https://doi.org/10.1016/j.fsigen.2017.10.004

    Article  PubMed  CAS  Google Scholar 

  29. Zheng Y, Shi J, Chen Q, Deng C, Yang F, Wang Y (2022) Identifying individual-specific microbial DNA fingerprints from skin microbiomes. Front Microbiol 13:960043. https://doi.org/10.3389/fmicb.2022.960043

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the volunteers for their participation in this study. This study was funded by the National Natural Science Foundation of China [grant numbers: 81772030].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weibo Liang or Haibo Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Additional file 1.

Fig. S1. The Jaccard distances between individualsand within individuals. Fig. S2. TheNMDS plots based on Jaccard distance. A: the samples were grouped byparticipants; B: the samples were grouped by sampling time points. Fig. S3. ThePCoA based on Bray-Curtis distance. The samples were grouped by the participants.

Additional file 2.

Table S1. The detail count value and taxonomy information for the top 30 important taxa in each sample.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Song, F., Song, M. et al. Explore variation of salivary bacteria across time and geolocations. Int J Legal Med 138, 547–554 (2024). https://doi.org/10.1007/s00414-023-03045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-03045-7

Keywords

Navigation