Skip to main content

Advertisement

Log in

Detection of multiple biomarkers associated with satellite cell fate in the contused skeletal muscle of rats for wound age estimation

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

From the perspective of forensic wound age estimation, experiments related to skeletal muscle regeneration after injury have rarely been reported. Here, we examined the time-dependent expression patterns of multiple biomarkers associated with satellite cell fate, including the transcription factor paired box 7 (Pax7), myoblast determination protein (MyoD), myogenin, and insulin-like growth factor (IGF-1), using immunohistochemistry, western blotting, and quantitative real-time PCR in contused skeletal muscle. An animal model of skeletal muscle contusion was established in 30 Sprague–Dawley male rats, and another five rats were employed as non-contused controls. Morphometrically, the data obtained from the numbers of Pax7 + , MyoD + , and myogenin + cells were highly correlated with the wound age. Pax7, MyoD, myogenin, and IGF-1 expression patterns were upregulated after injury at both the mRNA and protein levels. Pax7, MyoD, and myogenin protein expression levels confirmed the results of the morphometrical analysis. Additionally, the relative quantity of IGF-1 protein > 0.92 suggested a wound age of 3 to 7 days. The relative quantity of Pax7 mRNA > 2.44 also suggested a wound age of 3 to 7 days. Relative quantities of Myod1, Myog, and Igf1 mRNA expression > 2.78, > 7.80, or > 3.13, respectively, indicated a wound age of approximately 3 days. In conclusion, the expression levels of Pax7, MyoD, myogenin, and IGF-1 were upregulated in a time-dependent manner during skeletal muscle wound healing, suggesting the potential for using them as candidate biomarkers for wound age estimation in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data generated and analyzed during the study are available from the corresponding authors on reasonable request.

References

  1. Kondo T (2007) Timing of skin wounds. Leg Med (Tokyo) 9:109–114

    Article  PubMed  Google Scholar 

  2. Wang LL, Zhao R, Liu CS, Liu M, Li SS, Li JY, Jiang SK, Zhang M, Tian ZL, Wang M, Zhang MZ, Guan DW (2016) A fundamental study on the dynamics of multiple biomarkers in mouse excisional wounds for wound age estimation. J Forensic Leg Med 39:138–146

    Article  PubMed  Google Scholar 

  3. Gaballah MH, Fukuta M, Maeno Y, Seko-Nakamura Y, Monma-Ohtaki J, Shibata Y, Kato H, Aoki Y, Takamiya M (2016) Simultaneous time course analysis of multiple markers based on DNA microarray in incised wound in skeletal muscle for wound aging. Forensic Sci Int 266:357–368

    Article  Google Scholar 

  4. Kondo T, Ishida Y (2010) Molecular pathology of wound healing. Forensic Sci Int 203:93–98

    Article  CAS  PubMed  Google Scholar 

  5. Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236

    Article  CAS  PubMed  Google Scholar 

  6. Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116:267–272

    Article  CAS  PubMed  Google Scholar 

  7. Ohshima T (2000) Forensic wound examination. Forensic Sci Int 113:153–164

    Article  CAS  PubMed  Google Scholar 

  8. Takamiya M, Kumagai R, Nakayashiki N, Aoki Y (2006) A study on mRNA expressions of fibronectin in dermal and cerebral wound healing for wound age estimation. Leg Med (Tokyo) 8:214–219

    Article  CAS  PubMed  Google Scholar 

  9. Yu TS, Cheng ZH, Li LQ, Zhao R, Fan YY, Du Y, Ma WX, Guan DW (2010) The cannabinoid receptor type 2 is time-dependently expressed during skeletal muscle wound healing in rats. Int J Legal Med 124:397–404

    Article  PubMed  Google Scholar 

  10. Casse J-M, Martrille L, Vignaud J-M, Gauchotte G (2016) Skin wounds vitality markers in forensic pathology: an updated review. Med Sci Law 56:128–137

    Article  PubMed  Google Scholar 

  11. Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Shimada E, Yamamoto H, Nishiyama K, Inaka S, Takayasu T, Eisenmenger W, Kondo T (2015) Detection of endothelial progenitor cells in human skin wounds and its application for wound age determination. Int J Legal Med 129:1049–1054

    Article  PubMed  Google Scholar 

  12. Li N, Du Q, Bai R, Sun J (2020) Vitality and wound-age estimation in forensic pathology: review and future prospects. Forensic Sci Res 5:15–24

    Article  CAS  PubMed  Google Scholar 

  13. Ma WX, Yu TS, Fan YY, Zhang ST, Ren P, Wang SB, Zhao R, Pi JB, Guan DW (2011) Time-dependent expression and distribution of monoacylglycerol lipase during the skin-incised wound healing in mice. Int J Legal Med 125:549–558

    Article  PubMed  Google Scholar 

  14. Sun JH, Zhu XY, Dong TN, Zhang XH, Liu QQ, Li SQ, Du QX (2017) An “up, no change, or down” system: time-dependent expression of mRNAs in contused skeletal muscle of rats used for wound age estimation. Forensic Sci Int 272:104–110

    Article  CAS  PubMed  Google Scholar 

  15. Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Li SS, Liu M, Zhang MZ, Guan DW (2016) Detection of satellite cells during skeletal muscle wound healing in rats: time-dependent expressions of Pax7 and MyoD in relation to wound age. Int J Legal Med 130:163–172

    Article  PubMed  Google Scholar 

  16. Järvinen TA, Järvinen TL, Kääriäinen M, Kalimo H, Järvinen M (2005) Muscle injuries: biology and treatment. Am J Sports Med 33:745–764

    Article  PubMed  Google Scholar 

  17. Karalaki M, Fili S, Philippou A, Koutsilieris M (2009) Muscle regeneration: cellular and molecular events. In Vivo 23:779–796

    CAS  PubMed  Google Scholar 

  18. Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139:2845–2856

    Article  CAS  PubMed  Google Scholar 

  19. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Powell DJ, McFarland DC, Cowieson AJ, Muir WI, Velleman SG (2014) The effect of nutritional status on myogenic gene expression of satellite cells derived from different muscle types. Poult Sci 93:2278–2288

    Article  CAS  PubMed  Google Scholar 

  21. Wang YX, Rudnicki MA (2012) Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13:127–133

    Article  CAS  Google Scholar 

  22. Diao Y, Guo X, Li Y, Sun K, Lu L, Jiang L, Fu X, Zhu H, Sun H, Wang H, Wu Z (2012) Pax3/7BP is a Pax7-and Pax3-binding protein that regulates the proliferation of muscle precursor cells by an epigenetic mechanism. Cell Stem Cell 11:231–241

    Article  CAS  PubMed  Google Scholar 

  23. Holterman CE, Rudnicki MA (2005) Molecular regulation of satellite cell function. Semin Cell Dev Biol 16:575–584

    Article  CAS  PubMed  Google Scholar 

  24. Legerlotz K, Smith HK (2008) Role of MyoD in denervated, disused, and exercised muscle. Muscle Nerve 38:1087–1100

    Article  CAS  PubMed  Google Scholar 

  25. Motohashi N, Asakura A (2014) Muscle satellite cell heterogeneity and self-renewal. Front Cell Dev Biol 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ogura Y, Mishra V, Hindi SM, Kuang S, Kumar A (2013) Proinflammatory cytokine tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) suppresses satellite cell self-renewal through inversely modulating Notch and NF-κB signaling pathways. J Biol Chem 288:35159–35169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mourkioti F, Rosenthal N (2005) IGF-1, inflammation and stem cells: interactions during muscle regeneration. Trends Immunol 26:535–542

    Article  CAS  PubMed  Google Scholar 

  28. Cecchi R (2010) Estimating wound age: looking into the future. Int J Legal Med 124:523–536

    Article  PubMed  Google Scholar 

  29. Tian ZL, Jiang SK, Zhang M, Wang M, Li JY, Zhao R, Wang LL, Liu M, Li SS, Zhang MZ, Guan DW (2015) α7nAChR is expressed in satellite cells at different myogenic status during skeletal muscle wound healing in rats. J Mol Histol 46:499–509

    Article  CAS  PubMed  Google Scholar 

  30. von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA (2013) Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proc Natl Acad Sci U S A 110:16474–16479

    Article  Google Scholar 

  31. Hatade T, Takeuchi K, Fujita N, Arakawa T, Miki A (2014) Effect of heat stress soon after muscle injury on the expression of MyoD and myogenin during regeneration process. J Musculoskelet Neuronal Interact 14:325–333

    CAS  PubMed  Google Scholar 

  32. Jennische E, Hansson HA (1987) Regenerating skeletal muscle cells express insulin-like growth factor I. Acta Physiol Scand 130:327–332

    Article  CAS  PubMed  Google Scholar 

  33. Philippou A, Barton ER (2014) Optimizing IGF-I for skeletal muscle therapeutics. Growth Horm IGF Res 24:157–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Song Y-H, Song JL, Delafontaine P, Godard MP (2013) The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab 24:310–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan YY, Zhang ST, Yu LS, Ye GH, Lin KZ, Wu SZ, Dong MW, Han JG, Feng XP, Li XB (2014) The time-dependent expression of α7nAChR during skeletal muscle wound healing in rats. Int J Legal Med 128:779–786

    Article  PubMed  Google Scholar 

  36. Ishida Y, Kimura A, Nosaka M, Kuninaka Y, Takayasu T, Eisenmenger W, Kondo T (2012) Immunohistochemical analysis on cyclooxygenase-2 for wound age determination. Int J Legal Med 126:435–440

    Article  PubMed  Google Scholar 

  37. Ishida Y, Kuninaka Y, Furukawa F, Kimura A, Nosaka M, Fukami M, Yamamoto H, Kato T, Shimada E, Hata S, Takayasu T, Eisenmenger W, Kondo T (2018) Immunohistochemical analysis on aquaporin-1 and aquaporin-3 in skin wounds from the aspects of wound age determination. Int J Legal Med 132:237–242

    Article  PubMed  Google Scholar 

  38. Ishida Y, Kuninaka Y, Nosaka M, Kimura A, Kawaguchi T, Hama M, Sakamoto S, Shinozaki K, Eisenmenger W, Kondo T (2015) Immunohistochemical analysis on MMP-2 and MMP-9 for wound age determination. Int J Legal Med 129:1043–1048

    Article  PubMed  Google Scholar 

  39. Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1α (IL-1α) in human skin wounds for forensic wound age determination. Int J Legal Med 112:249–252

    Article  CAS  PubMed  Google Scholar 

  40. Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116:87–91

    Article  CAS  PubMed  Google Scholar 

  41. Abd-Elhakim YM, Omran BHF, Ezzeldein SA, Ahmed AI, El-Sharkawy NI, Mohamed AA (2022) Time-dependent expression of high-mobility group box-1 and toll-like receptors proteins as potential determinants of skin wound age in rats: forensic implication. Int J Legal Med 136(6):1781–1789. https://doi.org/10.1007/s00414-022-02788-z

    Article  PubMed  PubMed Central  Google Scholar 

  42. Du QX, Sun JH, Zhang LY, Liang XH, Guo XJ, Gao CR, Wang YY (2013) Time-dependent expression of SNAT2 mRNA in the contused skeletal muscle of rats: a possible marker for wound age estimation. Forensic Sci Med Pathol 9:528–533

    Article  CAS  PubMed  Google Scholar 

  43. Fan YY, Ye GH, Lin KZ, Yu LS, Wu SZ, Dong MW, Han JG, Feng XP, Li XB (2013) Time-dependent expression and distribution of Egr-1 during skeletal muscle wound healing in rats. J Mol Histol 44:75–81

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was financially supported by grants from the National Natural Science Foundation of China (82171872), Natural Science Foundation of Shanghai (21ZR1464600), Shanghai Key Laboratory of Forensic Medicine (21DZ2270800), Shanghai Forensic Service Platform (19DZ2290900), and Central Research Institute Public Project (GY2020Z-4, GY2020G-4, GY2021G-4, GY2021G-5, and GY2022G-3).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Wei Guan, Jian-Hua Zhang or Ning-Guo Liu.

Ethics declarations

Ethical approval

This article does not contain studies with human participants performed by any of the authors. The study complies with current ethical considerations for animals and was approved by the Academic Committee of China Medical University and Academy of Forensic Science (Ministry of Justice), People’s Republic of China.

Consent to participate

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, ZL., Wang, RL., Yang, QF. et al. Detection of multiple biomarkers associated with satellite cell fate in the contused skeletal muscle of rats for wound age estimation. Int J Legal Med 137, 875–886 (2023). https://doi.org/10.1007/s00414-023-02971-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-023-02971-w

Keywords

Navigation