Skip to main content
Log in

Estimating individual mtDNA haplotypes in mixed DNA samples by combining MinION and MiSeq

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

We tried to estimate individual mtDNA haplotypes in mixed DNA samples by combining MinION and MiSeq. The BAM files produced by MiSeq were viewed using Integrative Genomics Viewer (IGV) to verify mixed bases. By sorting the reads according to base type for each mixed base, partial haplotypes were determined. Then, the BAM files produced by MinKNOW were viewed using IGV. To determine haplotypes with IGV, only mixed bases determined by MiSeq were used as target bases. By sorting the reads according to base type for each target base, each contributor’s haplotype was estimated. In mixed samples from two contributors, even a haplotype with a minor contribution of 5% could be distinguished from the haplotype of the major contributor. In mixed samples of three contributors (mixture ratios of 1:1:1 and 4:2:1), each haplotype could also be distinguished. Sequences of C-stretches were determined very inaccurately in the MinION analysis. Although the analysis method was simple, each haplotype was correctly detected in all mixed samples with two or three contributors in various mixture ratios by combining MinION and MiSeq. This should be useful for identifying contributors to mixed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Bleka Ø, Storvik G, Gill P (2016) EuroForMix: an open source software based on a continuous model to evaluate STR DNA profiles from a mixture of contributors with artefacts. Forensic Sci Int Genet 21:35–44. https://doi.org/10.1016/j.fsigen.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  2. Swaminathan H, Grgicak CM, Medard M, Lun DS (2015) NOCIt: a computational method to infer the number of contributors to DNA samples analyzed by STR genotyping. Forensic Sci Int Genet 16:172–180. https://doi.org/10.1016/j.fsigen.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  3. Swaminathan H, Garg A, Grgicak CM, Medard M, Lun DS (2016) CEESIt: a computational tool for the interpretation of STR mixtures. Forensic Sci Int Genet 22:149–160. https://doi.org/10.1016/j.fsigen.2016.02.005

    Article  CAS  PubMed  Google Scholar 

  4. Marsden CD, Rudin N, Inman K, Lohmueller KE (2016) An assessment of the information content of likelihood ratios derived from complex mixtures. Forensic Sci Int Genet 22:64–72. https://doi.org/10.1016/j.fsigen.2016.01.008

    Article  CAS  PubMed  Google Scholar 

  5. Manabe S, Morimoto C, Hamano Y, Fujimoto S, Tamaki K (2017) Development and validation of open-source software for DNA mixture interpretation based on a quantitative continuous model. PLoS ONE 12(11):e0188183. https://doi.org/10.1371/journal.pone.0188183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vohr SH, Gordon R, Eizenga JM, Erlich HA, Calloway CD, Green RE (2017) A phylogenetic approach for haplotype analysis of sequence data from complex mitochondrial mixtures. Forensic Sci Int Genet 30:93–105. https://doi.org/10.1016/j.fsigen.2017.05.007

    Article  CAS  PubMed  Google Scholar 

  7. Nakanishi H, Fujii K, Nakahara H, Mizuno N, Sekiguchi K, Yoneyama K, Hara M, Takada A, Saito K (2020) Estimation of the number of contributors to mixed samples of DNA by mitochondrial DNA analyses using massively parallel sequencing. Int J Legal Med 134:101–109. https://doi.org/10.1007/s00414-019-02182-2

    Article  PubMed  Google Scholar 

  8. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351. https://doi.org/10.1038/nrg.2016.49

    Article  CAS  PubMed  Google Scholar 

  9. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Dilthey AT, Fiddes IT, Malla MSH, Nieto T, O’Grady J, Olsen HE, Pedersen BS, Rhie A, Richardson H, Quinlan AR, Snutch TP, Tee L, Paten B, Phillippy AM, Simpson JT, Loman NJ, Loose M (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345. https://doi.org/10.1038/nbt.4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bailey SF, Scheible MK, Williams C, Silva DSBS, Hoggan M, Eichman C, Faith SA (2017) Secure and robust cloud computing for high-throughput forensic microsatellite sequence analysis and databasing. Forensic Sci Int Genet 31:40–47. https://doi.org/10.1016/j.fsigen.2017.08.008

    Article  CAS  PubMed  Google Scholar 

  11. Tytgat O, Gansemans Y, Weymaere J, Rubben K, Deforce D, Nieuwerburgh FV (2020) Nanopore sequencing of a forensic STR multiplex reveals loci suitable for single-contributor STR profiling. Genes 11:381. https://doi.org/10.3390/genes11040381

    Article  CAS  PubMed Central  Google Scholar 

  12. Asogawa M, Ohno A, Nakagawa S, Ochiai E, Katahira Y, Sudo M, Osawa M, Imanishi SM, T, (2020) Human short tandem repeat identification using a nanopore-based DNA sequencer: a pilot study. J Human Genet 65:21–24. https://doi.org/10.1038/s10038-019-0688-z

    Article  CAS  Google Scholar 

  13. Cornelis S, Gansemans Y, Deleye L, Deforce D, Nieuwerburgh FV (2017) Forensic SNP genotyping using nanopore MinION sequencing. Sci Rep 7:41759. https://doi.org/10.1038/srep41759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cornelis S, Gansemans Y, Plaetsena AV, Weymaerea J, Willemsa S, Deforce D, Nieuwerburgh FV (2019) Forensic tri-allelic SNP genotyping using nanopore sequencing. Forensic Sci Int Genet 38:204–210. https://doi.org/10.1016/j.fsigen.2018.11.012

    Article  CAS  PubMed  Google Scholar 

  15. Lindberg MR, SSchmedes SE, Hewitt FC, Haas JL, Ternus KL, Kadavy DR, Budowle B, (2016) A comparison and integration of MiSeq and MinION platforms for sequencing single source and mixed mitochondrial genomes. PLoS ONE 11(12):e0167600. https://doi.org/10.1371/journal.pone.0167600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zascavage RR, Thorson K, Planz JV (2019) Nanopore sequencing: an enrichment-free alternative to mitochondrial DNA sequencing. Electrophoresis 40:272–280. https://doi.org/10.1002/elps.201800083

    Article  CAS  PubMed  Google Scholar 

  17. Liu C (2021) A long road/read to rapid high-resolution HLA typing: the nanopore perspective. Hum Immunol online ahead of print. https://doi.org/10.1016/j.humimm.2020.04.009

  18. Singh A, Bhatia P (2020) Comparative sequencing data analysis of Ion Torrent and MinION sequencing platforms using a clinical diagnostic haematology panel. Int J Lab Hematol 42:833–841. https://doi.org/10.1111/ijlh.13286

    Article  PubMed  Google Scholar 

  19. Thorvaldsdóttir H, JRobinson JT, Mesirov JP, (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192. https://doi.org/10.1093/bib/bbs017

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Erlich HA, Calloway CD (2015) Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions. Croat Med J 56:208–217. https://doi.org/10.3325/cmj.2015.56.208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dohm JC, Peters P, Stralis-Pavese N, Himmelbauer H (2020) Benchmarking of long-read correction methods. NAR Genom Bioinform 2:lqaa037. https://doi.org/10.1093/nargab/lqaa037

  22. Sim J, Chapman B (2019) In-field whole genome sequencing using the MinION nanopore sequencer to detect the presence of high-prized military targets. Aust J Forensic Sci 51:S86–S90. https://doi.org/10.1080/00450618.2019.1568562

    Article  Google Scholar 

  23. Ren Z, Zhang J, Zhang X, Liu X, Lin Y, Bai H, Wang M, Cheng F, Liu J, Li P, Kong L, Bo X, Wang S, Ni M, Yan J (2021) Forensic nanopore sequencing of STRs and SNPs using Verogen’s ForenSeq DNA Signature Prep Kit and MinION. Int J Legal Med 135:1685–1693. https://doi.org/10.1007/s00414-021-02604-0

    Article  PubMed  Google Scholar 

  24. Neal-McKinney JM, Liu KC, Lock CM, Wu W, Hu J (2021) Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni. Sci Rep 11:5676. https://doi.org/10.1038/s41598-021-84956-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrison GA, Fu J, Lee GC, Wiederhold NP, Cañete-Gibas CF, Bunnik EM, Wickes BL (2020) Nanopore sequencing of the fungal intergenic spacer sequence as a potential rapid diagnostic assay. J Clin Microbiol 58:e01972-e2020. https://doi.org/10.1128/JCM.01972-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu C, Yang X, Duffy BF, Hoisington-Lopez J, Crosby M, Porche-Sorbet R, Saito K, Berry R, Swamidass V, Mitra RD (2021) High-resolution HLA typing by long reads from the R10.3 Oxford nanopore flow cells. Hum Immunol 82:288–295. https://doi.org/10.1016/j.humimm.2021.02.005

    Article  CAS  PubMed  Google Scholar 

  27. Lavera T, Harrisona J, O’Neill PA, Moorea K, Farbosa A, Paszkiewicza K, Studholme DJ (2015) Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol Detect Quantif 3:1–8. https://doi.org/10.1016/j.bdq.2015.02.001

    Article  CAS  Google Scholar 

  28. Weirather JL, M. de Cesare M, Wang Y, Piazza P, Sebastiano V, Wang X, Buck D, Au KF (2017) Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Res 6:100. https://doi.org/10.12688/f1000research.10571.2

  29. Holland MM, McQuillan MR, O’Hanlon KA (2011) Second generation sequencing allows for mtDNA mixture deconvolution and high resolution detection of heteroplasmy. Croat Med J 52:299–313. https://doi.org/10.3325/cmj.2011.52.299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cho S, Kim MY, Lee JH, Lee SD (2018) Assessment of mitochondrial DNA heteroplasmy detected on commercial panel using MPS system with artificial mixture samples. Int J Legal Med 132:1049–1056. https://doi.org/10.1007/s00414-017-1755-7

    Article  PubMed  Google Scholar 

  31. Brandhagen MD, Just RS, Irwin JA (2020) Validation of NGS for mitochondrial DNA casework at the FBI Laboratory. Forensic Sci Int Genet 44:102151. https://doi.org/10.1016/j.fsigen.2019.102151

    Article  CAS  PubMed  Google Scholar 

  32. Churchill JD, Stoljarova M, King JL, Budowle B (2018) Massively parallel sequencing-enabled mixture analysis of mitochondrial DNA samples. Int J Legal Med 132:1263–1272. https://doi.org/10.1007/s00414-018-1799-3

    Article  PubMed  Google Scholar 

  33. Holt CL, Stephens KM, Walichiewicz P, Fleming KD, Forouzmand E, Wu S (2021) Human mitochondrial control region and mtgenomes design and forensic validation of NGS multiplexes, sequencing and analytical software. Genes (Basel) 12:599. https://doi.org/10.3390/genes12040599

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Nakanishi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Supplementary file2 (PDF 2074 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakanishi, H., Yoneyama, K., Hara, M. et al. Estimating individual mtDNA haplotypes in mixed DNA samples by combining MinION and MiSeq. Int J Legal Med 136, 423–432 (2022). https://doi.org/10.1007/s00414-021-02763-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02763-0

Keywords

Navigation