Skip to main content
Log in

Discovery of donor age markers from bloodstain by LC-MS/MS using a metabolic approach

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Bloodstains are frequently encountered at crime scenes and they provide important evidence about the incident, such as information about the victim or suspect and the time of death or other events. Efforts have been made to identify the age of the bloodstain’s donor through genomic approaches, but there are some limitations, such as the availability of databases and the quality dependence of DNA. There is a need for the development of a tool that can obtain information at once from a small blood sample. The aim of this study is to identify bloodstain metabolite candidates that can be used to determine donor age. We prepared bloodstain samples and analyzed metabolites using high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eighteen molecular features (MFs) were selected as candidates using volcano plots and multivariate analysis. Based on the MS/MS spectrum of the MFs, the following nine metabolites were identified from the METaboliteLINk database: Δ2-cis eicosenoic acid, ergothioneine, adenosine 5′-monophosphate, benzaldehyde, phenacylamine, myristic acid ethyl ester, p-coumaric acid, niacinamide, and N-arachidonoyl-l-alanine. These nine age markers at high or low abundances could be used to estimate the age of a bloodstain’s donor. This study was the first to develop metabolite age markers that can be used to analyze crime scene bloodstains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

Not applicable

Code availability

Not applicable

References

  1. Li B, Beveridge P, O’Hare WT, Islam M (2011) The estimation of the age of a blood stain using reflectance spectroscopy with a microspectrophotometer, spectral pre-processing and linear discriminant analysis. Forensic Sci Int 212(1-3):198–204. https://doi.org/10.1016/j.forsciint.2011.05.031

    Article  CAS  PubMed  Google Scholar 

  2. Mistek E, Halámková L, Lednev IK (2019) Phenotype profiling for forensic purposes: nondestructive potentially on scene attenuated total reflection Fourier transform-infrared (ATR FT-IR) spectroscopy of bloodstains. Forensic Chem 16:100176. https://doi.org/10.1016/j.forc.2019.100176

    Article  CAS  Google Scholar 

  3. Agudelo J, Huynh C, Halámek J (2015) Forensic determination of blood sample age using a bioaffinity-based assay. Analyst 140(5):1411–1415. https://doi.org/10.1039/C4AN02269F

    Article  CAS  PubMed  Google Scholar 

  4. Doty KC, Lednev IK (2018) Differentiating donor age groups based on Raman spectroscopy of bloodstains for forensic purposes. ACS Cent Sci 4(7):862–867. https://doi.org/10.1021/acscentsci.8b00198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang Y, Yan J, Hou J, Fu X, Li L, Hou Y (2015) Developing a DNA methylation assay for human age prediction in blood and bloodstain. Forensic Sci Int Genet 17:129–136. https://doi.org/10.1016/j.fsigen.2015.05.007

    Article  CAS  PubMed  Google Scholar 

  6. Zbieć-Piekarska R, Spólnicka M, Kupiec T, Makowska Ż, Spas A, Parys-Proszek A, Kucharczyk K, Płoski R, Branicki W (2015) Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci Int Genet 14:161–167. https://doi.org/10.1016/j.fsigen.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  7. Freire-Aradas A, Phillips C, Lareu M (2017) Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci Rev 29(2)

  8. Anderson RG, Kamen BA, Rothberg KG, Lacey SW (1992) Potocytosis: sequestration and transport of small molecules by caveolae. Science 255(5043):410–412. https://doi.org/10.1126/science.1310359

    Article  CAS  PubMed  Google Scholar 

  9. Guma M, Tiziani S, Firestein GS (2016) Metabolomics in rheumatic diseases: desperately seeking biomarkers. Nat Rev Rheumatol 12(5):269–281. https://doi.org/10.1038/nrrheum.2016.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smolinska A, Blanchet L, Buydens LM, Wijmenga SS (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97. https://doi.org/10.1016/j.aca.2012.05.049

    Article  CAS  PubMed  Google Scholar 

  11. Armitage EG, Barbas C (2014) Metabolomics in cancer biomarker discovery: current trends and future perspectives. J Pharm Biomed Anal 87:1–11. https://doi.org/10.1016/j.jpba.2013.08.041

    Article  CAS  PubMed  Google Scholar 

  12. Theodoridis GA, Gika HG, Want EJ, Wilson ID (2012) Liquid chromatography–mass spectrometry based global metabolite profiling: a review. Anal Chim Acta 711:7–16. https://doi.org/10.1016/j.aca.2011.09.042

    Article  CAS  PubMed  Google Scholar 

  13. Gika HG, Wilson ID, Theodoridis GA (2014) LC–MS-based holistic metabolic profiling. Problems, limitations, advantages, and future perspectives. J Chromatogr B 966:1–6. https://doi.org/10.1016/j.jchromb.2014.01.054

    Article  CAS  Google Scholar 

  14. Lei Z, Huhman DV, Sumner LW (2011) Mass spectrometry strategies in metabolomics. J Biol Chem 286(29):25435–25442. https://doi.org/10.1074/jbc.R111.238691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim H-J, Lee Y-J, Lee S, Lee Y-R, Son H, Shin M, Choi H, Yu J, Lee J, Kang H-G (2020) Metabolomic profiling of bloodstains on various absorbent and non-absorbent surfaces. Anal Bioanal 412(6):1407–1417. https://doi.org/10.1007/s00216-019-02371-3

    Article  CAS  Google Scholar 

  16. Seok AE, Lee J, Lee Y-R, Lee Y-J, Kim H-J, Ihm C, Sung HJ, Hyun SH, Kang H-G (2018) Estimation of age of bloodstains by mass-spectrometry: a metabolomic approach. Anal Chem 90(21):12431–12441. https://doi.org/10.1021/acs.analchem.8b01367

    Article  CAS  PubMed  Google Scholar 

  17. Simões SS, Ajenjo AC, Dias MJ (2018) Dried blood spots combined to an UPLC–MS/MS method for the simultaneous determination of drugs of abuse in forensic toxicology. J Pharm Biomed Anal 147:634–644. https://doi.org/10.1016/j.jpba.2017.02.046

    Article  CAS  Google Scholar 

  18. Chaleckis R, Murakami I, Takada J, Kondoh H, Yanagida M (2016) Individual variability in human blood metabolites identifies age-related differences. Proc Natl Acad Sci U S A 113(16):4252–4259. https://doi.org/10.1073/pnas.1603023113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Johnson LC, Martens CR, Santos-Parker JR, Bassett CJ, Strahler TR, Cruickshank-Quinn C, Reisdorph N, McQueen MB, Seals DR (2018) Amino acid and lipid associated plasma metabolomic patterns are related to healthspan indicators with ageing. Clin Sci (Lond) 132(16):1765–1777. https://doi.org/10.1042/CS20180409

    Article  CAS  Google Scholar 

  20. Vignoli A, Tenori L, Luchinat C, Saccenti E (2017) Age and sex effects on plasma metabolite association networks in healthy subjects. J Proteome Res 17(1):97–107. https://doi.org/10.1021/acs.jproteome.7b00404

    Article  CAS  PubMed  Google Scholar 

  21. Ellefsen KN, da Costa JL, Concheiro M, Anizan S, Barnes AJ, Pirard S, Gorelick DA, Huestis MA (2015) Cocaine and metabolite concentrations in DBS and venous blood after controlled intravenous cocaine administration. Bioanalysis 7(16):2041–2056. https://doi.org/10.4155/bio.15.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoffman JM, Lyu Y, Pletcher SD, Promislow DE (2017) Proteomics and metabolomics in ageing research: from biomarkers to systems biology. Essays Biochem 61(3):379–388. https://doi.org/10.1042/EBC20160083

    Article  PubMed  PubMed Central  Google Scholar 

  23. Saito K, Maekawa K, Kinchen JM, Tanaka R, Kumagai Y, Saito YJB, Bulletin P (2016) Gender-and age-associated differences in serum metabolite profiles among Japanese populations. Biol Pharm Bull 39(7):1179–1186. https://doi.org/10.1248/bpb.b16-00226

    Article  CAS  PubMed  Google Scholar 

  24. Lawton KA, Berger A, Mitchell M, Milgram KE, Evans AM, Guo L, Hanson RW, Kalhan SC, Ryals JA, Milburn MV (2008) Analysis of the adult human plasma metabolome. Pharmacogenomics. 9:383–397. https://doi.org/10.2217/14622416.9.4.383

    Article  CAS  PubMed  Google Scholar 

  25. Hartman PE (1990) [32] Ergothioneine as antioxidant. Methods Enzymol 186:310–318. https://doi.org/10.1016/0076-6879(90)86124-E

    Article  CAS  PubMed  Google Scholar 

  26. Xie LX, Williams KJ, He CH, Weng E, Khong S, Rose TE, Kwon O, Bensinger SJ, Marbois BN, Clarke CF (2015) Resveratrol and para-coumarate serve as ring precursors for coenzyme Q biosynthesis. J Lipid Res 56(4):909–919. https://doi.org/10.1194/jlr.M057919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hardie DG (2011) Energy sensing by the AMP-activated protein kinase and its effects on muscle metabolism. Proc Nutr Soc 70(1):92–99. https://doi.org/10.1017/S0029665110003915

    Article  CAS  PubMed  Google Scholar 

  28. Moreira OC, Estébanez B, Martínez-Florez S, de Paz JA, Cuevas MJ, González-Gallego J (2017) Mitochondrial function and mitophagy in the elderly: effects of exercise. Oxidative Med Cell Longev 2017:2012798–2012713. https://doi.org/10.1155/2017/2012798

    Article  CAS  Google Scholar 

  29. del Olmo A, Calzada J, Nuñez M (2017) Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: uses, exposure, and controversy. Crit Rev Food Sci Nutr 57(14):3084–3103. https://doi.org/10.1080/10408398.2015.1087964

    Article  CAS  PubMed  Google Scholar 

  30. Gudelj I, Keser T, Vučković F, Škaro V, Goreta SŠ, Pavić T, Dumić J, Primorac D, Lauc G, Gornik O (2015) Estimation of human age using N-glycan profiles from bloodstains. Int J Legal Med 129(5):955–961. https://doi.org/10.1007/s00414-015-1162-x

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dissing J, Søndervang A, Lund S (2010) Exploring the limits for the survival of DNA in blood stains. J Forensic Legal Med 17(7):392–396. https://doi.org/10.1016/j.jflm.2010.08.001

    Article  Google Scholar 

  32. Inoue H, Takabe F, Iwasa M, Maeno Y (1991) Identification of fetal hemoglobin and simultaneous estimation of bloodstain age by high-performance liquid chromatography. Int J Legal Med 104(3):127–131. https://doi.org/10.1007/BF01369715

    Article  CAS  PubMed  Google Scholar 

  33. Dinis-Oliveira RJ (2019) Metabolism and metabolomics of opiates: a long way of forensic implications to unravel. J Forensic Legal Med 61:128–140. https://doi.org/10.1016/j.jflm.2018.12.005

    Article  Google Scholar 

  34. Courant F, Antignac JP, Dervilly-Pinel G, Le Bizec B (2014) Basics of mass spectrometry based metabolomics. Proteomics 14(21-22):2369–2388. https://doi.org/10.1002/pmic.201400255

    Article  CAS  PubMed  Google Scholar 

  35. Castillo-Peinado L, de Castro ML (2016) Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 925:1–15. https://doi.org/10.1016/j.aca.2016.04.040

    Article  CAS  PubMed  Google Scholar 

  36. Ren J-L, Zhang A-H, Kong L, Wang X-J (2018) Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 8(40):22335–22350. https://doi.org/10.1039/C8RA01574K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Castillo-Peinado L, de Castro ML (2017) Metabolomics in the context of forensic omics biomarkers. Int J Forensic Sci Pathol 5(7):384–391. https://doi.org/10.19070/2332-287X-1700082

    Article  Google Scholar 

  38. Lekka NP, Lee KH, Argyriou AA, Beratis S, Parks RW (2007) Association of cigarette smoking and depressive symptoms in a forensic population. Depress Anxiety 24(5):325–330. https://doi.org/10.1002/da.20235

    Article  PubMed  Google Scholar 

  39. Kim J-Y, Park J-H, Kim MI, Lee HH, Kim HL, Jeong K-S, Moon S-O, Kang P-W, Park K-W, Lee Y-HJ (2018) Identification of female-specific blood stains using a 17β-estradiol-targeted aptamer-based sensor. Int J Legal Med 132(1):91–98. https://doi.org/10.1007/s00414-017-1718-z

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Agilent Technologies for the technical support with constructive comments.

Funding

This research was supported and funded by the Korean National Police Agency (Project Name: Development of blood stain analysis system for scene reconstruction/Project Number: PA-I000001).

Author information

Authors and Affiliations

Authors

Contributions

Hyo-Jin Kim: conceptualization, methodology, formal analysis, investigation, visualization, writing—original draft preparation, writing—reviewing and editing. You-Rim Lee: methodology, investigation, visualization, writing—reviewing and editing. Seungyeon Lee: investigation. Sohyen Kwon: investigation. Yeon Tae Chun: investigation. Sung Hee Hyun: formal analysis. Ho Joong Sung: formal analysis. Jiyeong Lee: visualization, writing—reviewing and editing, supervision, project administration. Hee-Gyoo Kang: conceptualization, resources, writing—reviewing and editing, supervision, project administration, funding acquisition

Corresponding authors

Correspondence to Jiyeong Lee or Hee-Gyoo Kang.

Ethics declarations

Ethics approval

All participants gave written informed consent before participation in the study. This study was approved by the Institutional Review Board of Eulji Hospital (EMC 2017-03-003).

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figure 1.

Experimental workflow to discover the donor age markers. (TIF 3627 kb)

High Resulotion (PNG 1.95 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, HJ., Lee, YR., Lee, S. et al. Discovery of donor age markers from bloodstain by LC-MS/MS using a metabolic approach. Int J Legal Med 136, 297–308 (2022). https://doi.org/10.1007/s00414-021-02640-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-021-02640-w

Keywords

Navigation