Skip to main content

Advertisement

Log in

Beyond metrics and morphology: the potential of FTIR-ATR and chemometrics to estimate age-at-death in human bone

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

In forensic anthropology, the application of traditional methods for estimating the biological profile of human skeletal remains is often hampered by poor preservation and skeletal representativeness, compromising their reliability. Thus, the development of alternative methods to the morphometric analysis of bones to estimate the biological profile of human remains is paramount. The age of an individual can cause changes in bone morphology, mass and size, as well as in its chemical composition. In this sense, the main objective of this research was to evaluate if the contents of bone collagen (Am/P), carbonate type A (API), carbonate type B (BPI), the relation between the carbonate content (types A and B) to type B carbonate (C/C), carbonate-phosphate ratio (C/P) and crystallinity index (CI), spectroscopic indices obtained from relationships between infrared absorption band intensities (FTIR-ATR), can be used as age-at-death predictors. A sample of femora and humeri from the 21st Century Identified Skeleton Collection (N = 80, 44 females and 36 males) was employed. Results show that, with advancing age, women’s femora have lower CI values, but BPI and C/P indices increase, and the deformation and disorder of the crystal lattice are probably affected by the integration of type B carbonate content of the femur. The ratios analysed, especially the CI and the BPI, show potential to estimate age-at-death in human skeletal remains, when sex is already known, thus helping to assess the biological profile when conventional methods cannot be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cattaneo C (2007) Forensic anthropology: developments of a classical discipline in the new millennium. Forensic Sci Int 165:185–193. https://doi.org/10.1016/j.forsciint.2006.05.018

    Article  PubMed  Google Scholar 

  2. Cunha E (2014) A Antropologia Passo a Passo. In: Gomes A (ed) Enfermagem Forense. Lidel, Lisboa, pp 280–288

    Google Scholar 

  3. Mundorff AZ, Shaler R, Bieschke ET, Mar-Cash E (2014) Marrying anthropology and DNA: essential for solving complex commingling problems in cases of extreme fragmentation. In: Adams BJ, Byrd JE (eds) Recovery, analysis, and identification of commingled human remains. Academic Press, San Diego, pp 257–273

    Chapter  Google Scholar 

  4. Yazedjian L, Kešetović R (2008) The application of traditional anthropological methods in a DNA-led identification process. In: Adams BJ, Byrd JE (eds) recovery, analysis, and identification of commingled human remains. Humana Press, pp 271–284

  5. Boskey JA, Gokhale AL, Robey PG (2001) The biochemistry of bone. In: Marcus R, Feldman D, Nelson D, Rosen C (eds) Osteoporosis I. Academic Press, San Diego, pp 107–188

    Google Scholar 

  6. Wang X-Y, Zuo Y, Huang D et al (2010) Comparative study on inorganic composition and crystallographic properties of cortical and cancellous bone. Biomed Environ Sci 23:473–480. https://doi.org/10.1016/S0895-3988(11)60010-X

    Article  CAS  PubMed  Google Scholar 

  7. Boskey AL, Robey PG (2007) The composition of bone. In: Bilezikian JP, Bouillon R, Clemens T et al (eds) Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Wiley-Blackwell, pp 84–92

  8. Zhu W, Robey PG, Boskey AL (2013) The regulatory role of matrix proteins in mineralization of bone. In: Marcus R, Feldman D, Nelson D, Rosen C (eds) Osteoporosis I. Academic Press, San Diego, pp 235–255

    Google Scholar 

  9. Gonçalves D, Vassalo AR, Mamede AP, Makhoul C, Piga G, Cunha E, Marques MPM, Batista de Carvalho LAE (2018) Crystal clear: vibrational spectroscopy reveals intrabone, intraskeleton, and interskeleton variation in human bones. Am J Phys Anthropol 166:296–312. https://doi.org/10.1002/ajpa.23430

    Article  PubMed  Google Scholar 

  10. Nagy G, Lorand T, Patonai Z, Montsko G, Bajnoczky I, Marcsik A, Mark L (2008) Analysis of pathological and non-pathological human skeletal remains by FT-IR spectroscopy. Forensic Sci Int 175:55–60. https://doi.org/10.1016/j.forsciint.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  11. Marques MPM, Gonçalves D, Amarante AIC, Makhoul CI, Parker SF, Batista de Carvalho LAE (2016) Osteometrics in burned human skeletal remains by neutron and optical vibrational spectroscopy. RSC Adv 6:68638–68641. https://doi.org/10.1039/c6ra13564a

    Article  CAS  Google Scholar 

  12. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487. https://doi.org/10.1007/BF00369214

    Article  CAS  PubMed  Google Scholar 

  13. Madupalli H, Pavan B, Tecklenburg MMJ (2017) Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J Solid State Chem 255:27–35. https://doi.org/10.1016/j.jssc.2017.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mamede AP, Gonçalves D, Marques MPM, Batista de Carvalho LAE (2018) Burned bones tell their own stories: a review of methodological approaches to assess heat-induced diagenesis. Appl Spectrosc Rev 53:603–635. https://doi.org/10.1080/05704928.2017.1400442

    Article  Google Scholar 

  15. Tacker RC (2008) Carbonate in igneous and metamorphic fluorapatite: two type A and two type B substitutions. Am Mineral 93:168–176. https://doi.org/10.2138/am.2008.2551

    Article  CAS  Google Scholar 

  16. Wopenka B, Pasteris JD (2005) A mineralogical perspective on the apatite in bone. Mater Sci Eng C 25:131–143. https://doi.org/10.1016/j.msec.2005.01.008

    Article  CAS  Google Scholar 

  17. Carden A, Morris MD (2000) Application of vibrational spectroscopy to the study of mineralized tissues (review). J Biomed Opt 5:259–268. https://doi.org/10.1117/1.429994

    Article  CAS  PubMed  Google Scholar 

  18. Person A, Bocherens H, Saliège JF, Paris F, Zeitoun V, Gérard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22:211–221. https://doi.org/10.1006/jasc.1995.0023

    Article  Google Scholar 

  19. Boskey A, Pleshko Camacho N (2007) FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478. https://doi.org/10.1016/j.biomaterials.2006.11.043

    Article  CAS  PubMed  Google Scholar 

  20. Lebon M, Reiche I, Bahain JJ, Chadefaux C, Moigne AM, Fröhlich F, Sémah F, Schwarcz HP, Falguères C (2010) New parameters for the characterization of diagenetic alterations and heat-induced changes of fossil bone mineral using Fourier transform infrared spectrometry. J Archaeol Sci 37:2265–2276. https://doi.org/10.1016/j.jas.2010.03.024

    Article  Google Scholar 

  21. Marques MPM, Mamede AP, Vassalo AR, Makhoul C, Cunha E, Gonçalves D, Parker SF, Batista de Carvalho LAE (2018) Heat-induced bone diagenesis probed by vibrational spectroscopy. Sci Rep 8:15935. https://doi.org/10.1038/s41598-018-34376-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mamede AP, Vassalo AR, Piga G, Cunha E, Parker SF, Marques MPM, Batista de Carvalho LAE, Gonçalves D (2018) Potential of bioapatite hydroxyls for research on archeological burned bone. Anal Chem 90:11556–11563. https://doi.org/10.1021/acs.analchem.8b02868

    Article  CAS  PubMed  Google Scholar 

  23. Vassalo AR, Cunha E, Batista de Carvalho LAE, Gonçalves D (2016) Rather yield than break: assessing the influence of human bone collagen content on heat-induced warping through vibrational spectroscopy. Int J Legal Med 130:1647–1656. https://doi.org/10.1007/s00414-016-1400-x

    Article  PubMed  Google Scholar 

  24. Beasley MM, Bartelink EJ, Taylor L, Miller RM (2014) Comparison of transmission FTIR, ATR, and DRIFT spectra: implications for assessment of bone bioapatite diagenesis. J Archaeol Sci 46:16–22. https://doi.org/10.1016/j.jas.2014.03.008

    Article  CAS  Google Scholar 

  25. Dutta A (2017) Fourier transform infrared spectroscopy. In: Thomas S, Thomas R, Zachariah AK, Mishra RK (eds) Spectroscopic Methods for Nanomaterials Characterization. Elsevier Inc, pp 73–93

  26. Thompson TJU, Gauthier M, Islam M (2009) The application of a new method of Fourier transform infrared spectroscopy to the analysis of burned bone. J Archaeol Sci 36:910–914. https://doi.org/10.1016/j.jas.2008.11.013

    Article  Google Scholar 

  27. Monnier GF (2018) A review of infrared spectroscopy in microarchaeology: methods, applications, and recent trends. J Archaeol Sci Rep 18:806–823. https://doi.org/10.1016/j.jasrep.2017.12.029

    Article  Google Scholar 

  28. Stiner MC, Kuhn SL, Surovell TA, Goldberg P, Meignen L, Weiner S, Bar-Yosef O (2001) Bone preservation in Hayonim Cave (Israel): a macroscopic and mineralogical study. J Archaeol Sci 28:643–659. https://doi.org/10.1006/jasc.2000.0634

    Article  Google Scholar 

  29. Hollund HI, Ariese F, Fernandes R et al (2013) Testing an alternative high-throughput tool for investigating bone diagenesis: FTIR in attenuated total reflection (ATR) mode. Archaeometry 55:507–532. https://doi.org/10.1111/j.1475-4754.2012.00695.x

    Article  CAS  Google Scholar 

  30. Legros R, Balmain N, Bonel G (1987) Age-related changes in mineral of rat and bovine cortical bone. Calcif Tissue Int 41:137–144. https://doi.org/10.1007/BF02563793

    Article  CAS  PubMed  Google Scholar 

  31. Rey C, Renugopalakrishman V, Collins B, Glimcher MJ (1991) Fourier transform infrared spectroscopic study of the carbonate ions in bone mineral during aging. Calcif Tissue Int 49:251–258. https://doi.org/10.1007/BF02556214

    Article  CAS  PubMed  Google Scholar 

  32. Handschin RG, Stern WB (1995) X-ray diffraction studies on the lattice perfection of human bone apatite (Crista Iliaca). Bone 16:355S–363S. https://doi.org/10.1016/S8756-3282(95)80385-8

    Article  Google Scholar 

  33. Miller LM, Vairavamurthy V, Chance MR, Mendelsohn R, Paschalis EP, Betts F, Boskey AL (2001) In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the ν4 PO43− vibration. Biochim Biophys Acta, Gen Subj 1527:11–19. https://doi.org/10.1016/S0304-4165(01)00093-9

    Article  CAS  Google Scholar 

  34. Grynpas MD, Bonar LC, Glimcher MJ (1984) Failure to detect an amorphous calcium-phosphate solid phase in bone mineral: a radial distribution function study. Calcif Tissue Int 36:291–301. https://doi.org/10.1007/BF02405333

    Article  CAS  PubMed  Google Scholar 

  35. Handschin RG, Stern WB (1992) Crystallographic lattice refinement of human bone. Calcif Tissue Int 51:111–120. https://doi.org/10.1007/BF00298498

    Article  CAS  PubMed  Google Scholar 

  36. Rey C, Kim HM, Glimcher MJ (1994) Maturation of poorly crystalline synthetic and biological apatites. In: Brown PW, Constantz B (eds) Hydroxyapatite and related materials. CRC Press, Boca Raton, pp 181–187

    Google Scholar 

  37. Gourion-Arsiquaud S, Burket JC, Havill LM, DiCarlo E, Doty SB, Mendelsohn R, van der Meulen MCH, Boskey AL (2009) Spatial variation in osteonal bone properties relative to tissue and animal age. J Bone Miner Res 24:1271–1281. https://doi.org/10.1359/jbmr.090201

    Article  PubMed  PubMed Central  Google Scholar 

  38. Turunen MJ, Saarakkala S, Rieppo L, Helminen HJ, Jurvelin JS, Isaksson H (2011) Comparison between infrared and Raman spectroscopic analysis of maturing rabbit cortical bone. Appl Spectrosc 65:595–603. https://doi.org/10.1366/10-06193

    Article  CAS  PubMed  Google Scholar 

  39. Sillen A, Morris A (1996) Diagenesis of bone from border cave: implications for the age of the border cave hominids. J Hum Evol 31:499–506. https://doi.org/10.1006/jhev.1996.0075

    Article  Google Scholar 

  40. Grynpas MD, Tupy JH, Sodek J (1994) The distribution of soluble, mineral-bound, and matrix-bound proteins in osteoporotic and normal bones. Bone 15:505–513. https://doi.org/10.1016/8756-3282(94)90274-7

    Article  CAS  PubMed  Google Scholar 

  41. Fedarko NS, Vetter UK, Weinstein S, Robey PG (1992) Age-related changes in hyaluronan, proteoglycan, collagen, and osteonectin synthesis by human bone cells. J Cell Physiol 151:215–227. https://doi.org/10.1002/jcp.1041510202

    Article  CAS  PubMed  Google Scholar 

  42. Ferreira MT, Vicente R, Navega D et al (2014) A new forensic collection housed at the University of Coimbra, Portugal: the 21st century identified skeletal collection. Forensic Sci Int 245:202.e1–202.e5. https://doi.org/10.1016/j.forsciint.2014.09.021

    Article  Google Scholar 

  43. Boaks A, Siwek D, Mortazavi F (2014) The temporal degradation of bone collagen: a histochemical approach. Forensic Sci Int 240:104–110. https://doi.org/10.1016/j.forsciint.2014.04.008

    Article  CAS  PubMed  Google Scholar 

  44. Grupe G (1988) Impact of the choice of bone samples on trace element data in excavated human skeletons. J Archaeol Sci 15:123–129. https://doi.org/10.1016/0305-4403(88)90002-7

    Article  Google Scholar 

  45. Weiner S, Bar-Yosef O (1990) States of preservation of bones from prehistoric sites in the near east: a survey. J Archaeol Sci 17:187–196. https://doi.org/10.1016/0305-4403(90)90058-D

    Article  Google Scholar 

  46. Wright LE, Schwarcz HP (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–944. https://doi.org/10.1006/jasc.1996.0087

    Article  Google Scholar 

  47. Trueman CNG, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739. https://doi.org/10.1016/j.jas.2003.11.003

    Article  Google Scholar 

  48. Snoeck C, Lee-Thorp JA, Schulting RJ (2014) From bone to ash: compositional and structural changes in burned modern and archaeological bone. Palaeogeogr Palaeoclimatol Palaeoecol 416:55–68. https://doi.org/10.1016/j.palaeo.2014.08.002

    Article  Google Scholar 

  49. Team RC (2019) R: A language and environment for statistical computing. http://r-project.org/. Accessed 4 Nov 2019

  50. Reznikov N, Chase H, Brumfeld V, Shahar R, Weiner S (2015) The 3D structure of the collagen fibril network in human trabecular bone: relation to trabecular organization. Bone 71:189–195. https://doi.org/10.1016/j.bone.2014.10.017

    Article  PubMed  Google Scholar 

  51. Thompson TJU, Islam M, Bonniere M (2013) A new statistical approach for determining the crystallinity of heat-altered bone mineral from FTIR spectra. J Archaeol Sci 40:416–422. https://doi.org/10.1016/j.jas.2012.07.008

    Article  CAS  Google Scholar 

  52. Francalacci P, Tarli SB (1988) Multielementary analysis of trace elements and preliminary results on stable isotopes in two Italian prehistoric sites. Methodological aspects. In: Grupe G, Herrmann B (eds) Trace elements in environmental history. Proceedings in Life Sciences. Springer, Berlin, pp 41–52

  53. Shemesh A (1990) Crystallinity and diagenesis of sedimentary apatites. Geochim Cosmochim Acta 54:2433–2438. https://doi.org/10.1016/0016-7037(90)90230-I

    Article  CAS  Google Scholar 

  54. Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O (1995) Differential burning, recrystallization, and fragmentation of archaeological bone. J Archaeol Sci 22:223–237. https://doi.org/10.1006/jasc.1995.0024

    Article  Google Scholar 

  55. Trueman CN, Privat K, Field J (2008) Why do crystallinity values fail to predict the extent of diagenetic alteration of bone mineral? Palaeogeogr Palaeoclimatol Palaeoecol 266:160–167. https://doi.org/10.1016/j.palaeo.2008.03.038

    Article  Google Scholar 

  56. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038. https://doi.org/10.1007/s00198-005-1992-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Akkus O, Polyakova-Akkus A, Adar F, Schaffler MB (2003) Aging of microstructural compartments in human compact bone. J Bone Miner Res 18:1012–1019. https://doi.org/10.1359/jbmr.2003.18.6.1012

    Article  CAS  PubMed  Google Scholar 

  58. Thompson TJU, Islam M, Piduru K, Marcel A (2011) An investigation into the internal and external variables acting on crystallinity index using Fourier transform infrared spectroscopy on unaltered and burned bone. Palaeogeogr Palaeoclimatol Palaeoecol 299:168–174. https://doi.org/10.1016/j.palaeo.2010.10.044

    Article  Google Scholar 

  59. Driessens FCM, van Dijk JWE, Borggreven JMPM (1978) Biological calcium phosphates and their role in the physiology of bone and dental tissues I. composition and solubility of calcium phosphates. Calcif Tissue Res 26:127–137. https://doi.org/10.1007/BF02013247

    Article  CAS  PubMed  Google Scholar 

  60. Glimcher MJ (2006) Bone: nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev Mineral Geochem 64:223–282. https://doi.org/10.2138/rmg.2006.64.8

    Article  CAS  Google Scholar 

  61. Surovell TA, Stiner MC (2001) Standardizing infra-red measures of bone mineral crystallinity: an experimental approach. J Archaeol Sci 28:633–642. https://doi.org/10.1006/jasc.2000.0633

    Article  Google Scholar 

  62. Rey C, Collins B, Goehl T, Dickson IR, Glimcher MJ (1989) The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy study. Calcif Tissue Int 45:157–164. https://doi.org/10.1007/BF02556059

    Article  CAS  PubMed  Google Scholar 

  63. Pleshko N, Boskey A, Mendelsohn R (1991) Novel infrared spectroscopic method for the determination of crystallinity of hydroxyapatite minerals. Biophys J 60:786–793. https://doi.org/10.1016/S0006-3495(91)82113-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Figueiredo MM, Gamelas JAF, Martins AG (2012) Characterization of bone and bone-based graft materials using FTIR spectroscopy. In: Theophanides T (ed) Infrared spectroscopy. IntechOpen, Rijeka, pp 315–338

    Google Scholar 

  65. Wang Q, Li W, Liu R, Zhang K, Zhang H, Fan S, Wang Z (2019) Human and non-human bone identification using FTIR spectroscopy. Int J Legal Med 133:269–276. https://doi.org/10.1007/s00414-018-1822-8

    Article  PubMed  Google Scholar 

  66. Nielsen-Marsh CM, Hedges REM (2000) Patterns of diagenesis in bone II: effects of acetic acid treatment and the removal of diagenetic CO32−. J Archaeol Sci 27:1151–1159. https://doi.org/10.1006/jasc.1999.0538

    Article  Google Scholar 

  67. Longato S, Wöss C, Hatzer-Grubwieser P, Bauer C, Parson W, Unterberger SH, Kuhn V, Pemberger N, Pallua AK, Recheis W, Lackner R, Stalder R, Pallua JD (2015) Post-mortem interval estimation of human skeletal remains by micro-computed tomography, mid-infrared microscopic imaging and energy dispersive X-ray mapping. Anal Methods 7:2917–2927. https://doi.org/10.1039/c4ay02943g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453. https://doi.org/10.1016/j.bone.2003.11.003

    Article  CAS  PubMed  Google Scholar 

  69. Yerramshetty JS, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39:1236–1243. https://doi.org/10.1016/j.bone.2006.06.002

    Article  CAS  PubMed  Google Scholar 

  70. Klepinger LL (2006) Fundamentals of forensic anthropology. John Wiley & Sons, Franklin Township

    Book  Google Scholar 

  71. Rey C, Combes C, Drouet C, Sfihi H, Barroug A (2007) Physico-chemical properties of nanocrystalline apatites: implications for biominerals and biomaterials. Mater Sci Eng C 27:198–205. https://doi.org/10.1016/j.msec.2006.05.015

    Article  CAS  Google Scholar 

  72. Pucéat E, Reynard B, Lécuyer C (2004) Can crystallinity be used to determine the degree of chemical alteration of biogenic apatites? Chem Geol 205:83–97. https://doi.org/10.1016/j.chemgeo.2003.12.014

    Article  CAS  Google Scholar 

  73. Casuccio C (1962) An introduction to the study of osteoporosis (biochemical and biophysical research in bone ageing). Proc R Soc Med 55:663–668. https://doi.org/10.1177/003591576205500815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Rogers HJ, Weidmann SM, Parkinson A (1952) Studies on the skeletal tissues. II. The collagen content of bones from rabbits, oxen and humans. Biochem J 50:537–542. https://doi.org/10.1042/bj0500537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Eastoe JE (1968) Chemical aspects of the matrix concept in calcified tissue organisation. Calcif Tissue Res 2:1–19. https://doi.org/10.1007/BF02279189

    Article  CAS  PubMed  Google Scholar 

  76. Very JM, Gibert R, Guilhot B, Debout M, Alexandre C (1997) Effect of aging on the amide group of bone matrix, measured by FTIR spectrophotometry, in adult subjects deceased as a result of violent death. Calcif Tissue Int 60:271–275. https://doi.org/10.1007/s002239900228

    Article  CAS  PubMed  Google Scholar 

  77. Bailey AJ, Sims TJ, Ebbesen EN, Mansell JP, Thomsen JS, Mosekilde L (1999) Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif Tissue Int 65:203–210. https://doi.org/10.1007/s002239900683

    Article  CAS  PubMed  Google Scholar 

  78. Zioupos P, Currey JD, Hamer AJ (1999) The role of collagen in the declining mechanical properties of aging human cortical bone. J Biomed Mater Res 45:108–116. https://doi.org/10.1002/(SICI)1097-4636(199905)45:2<108::AID-JBM5>3.0.CO;2-A

    Article  CAS  PubMed  Google Scholar 

  79. Collins MJ, Nielsen-Marsh CM, Hiller J, Smith CI, Roberts JP, Prigodich RV, Wess TJ, Csapo J, Millard AR, Turner-Walker G (2002) The survival of organic matter in bone: a review. Archaeometry 44:383–394. https://doi.org/10.1111/1475-4754.t01-1-00071

    Article  CAS  Google Scholar 

  80. Ruppel ME, Burr DB, Miller LM (2006) Chemical makeup of microdamaged bone differs from undamaged bone. Bone 39:318–324. https://doi.org/10.1016/J.BONE.2006.02.052

    Article  CAS  PubMed  Google Scholar 

  81. Dequeker J, Merlevede W (1971) Collagen content and collagen extractability pattern of adult human trabecular bone according to age, sex and amount of bone mass. Biochim Biophys Acta, Gen Subj 244:410–420. https://doi.org/10.1016/0304-4165(71)90243-1

    Article  CAS  Google Scholar 

  82. Dequeker J, Remans J, Franssen R, Waes J (1971) Ageing patterns of trabecular and cortical bone and their relationship. Calcif Tissue Res 7:23–30. https://doi.org/10.1007/BF02062590

    Article  CAS  PubMed  Google Scholar 

  83. Baccino E, Schmitt A (2006) Determination of adult age at death in the forensic context. In: Schmitt A, Cunha E, Pinheiro J (eds) Forensic anthropology and medicine: complementary sciences from recovery to cause of death. Humana Press, Totowa, pp 259–280

    Chapter  Google Scholar 

Download references

Funding

The authors thank the Centre for Functional Ecology, the Research Centre for Anthropology and Health and the Molecular Physical Chemistry R&D Unit (financed by national funds by FCT – Fundação para a Ciência e Tecnologia, under the projects UID/BIA/04004/2019, UID/SADG/00283/2019 and UIDB/00070/2020, respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Pedrosa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrosa, M., Curate, F., Batista de Carvalho, L.A.E. et al. Beyond metrics and morphology: the potential of FTIR-ATR and chemometrics to estimate age-at-death in human bone. Int J Legal Med 134, 1905–1914 (2020). https://doi.org/10.1007/s00414-020-02310-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-020-02310-3

Keywords

Navigation