Skip to main content

Advertisement

Log in

Zornia latifolia: a smart drug being adulterated by Stylosanthes guianensis

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Dried herbal preparations, based on “Zornia latifolia,” are commonly sold on web, mainly for their supposed hallucinogenic properties. In this work, we demonstrate that these commercial products contain a different Fabacea, i.e., Stylosanthes guianensis, a cheaper plant, widely cultivated in tropical regions as a fodder legume. We were provided with plant samples of true Zornia latifolia from Brazil, and carried out a thorough comparison of the two species. The assignment of commercial samples was performed by means of micro-morphological analysis, DNA barcoding, and partial phytochemical investigation. We observed that Z. latifolia contains large amounts of flavonoid di-glycosides derived from luteolin, apigenin, and genistein, while in S. guianensis lesser amounts of flavonoids, mainly derived from quercetin, were found. It is likely that the spasmolytic and anxiolytic properties of Z. latifolia, as reported in traditional medicine, derive from its contents in apigenin and/or genistein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. From a taxonomical point of view, Fortuna-Perez & Tozzi [4] established under synonymy of Z. latifolia Sm. the following taxa: Z. gemella Willd. ex Vogel (an invalid name), Zornia gracilis DC. (under Z. diphylla (L.) Pers. var. gracilis (DC.) Benth.), Z. diphylla (L.) Pers. var. bernardinensis Chodat & Hassl., Z. maranhamensis G. Don, and Z. surinamensis Miq.. These taxa were frequently identified in herbaria as Z. latifolia. Before this, Zornia latifolia (as Z. latifolia DC.) had already been considered as a variety of Z. diphylla (L.) Pers. by Bentham [5], but Mohlenbrock [6] reestablished the valid name for Z. latifolia Sm..

References

  1. Zuba D, Byrska B, Maciow M (2011) Comparison of “herbal highs” composition. Anal Bioanal Chem 400:119–126. https://doi.org/10.1007/s00216-011-4743-7.

    Article  PubMed  CAS  Google Scholar 

  2. Cornara L, Borghesi B, Canali C, Andrenacci M, Basso M, Federici S, Labra M (2013) Smart drugs: green shuttle or real drug? Int J Legal Med 127(6):1109–1123

    Article  PubMed  CAS  Google Scholar 

  3. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Ferreirós N (2009) “Spice” and other herbal blends: harmless incense or cannabinoid designer drugs? J Mass Spectrom 44(5):832–837. https://doi.org/10.1002/jms.1558

    Article  PubMed  CAS  Google Scholar 

  4. Fortuna-Perez AP, Tozzi AMGA (2011) Nomenclatural changes for Zornia (Leguminosae, Papilionoideae, Dalbergieae) in Brazil. Novon 21(3):331–337. https://doi.org/10.3417/2010040

    Article  Google Scholar 

  5. Bentham G (1859) Papilionaceae. Pp. 80–85 in C. F. P. de Martius & A. G. Eichler (editors), Flora Brasiliensis, Vol. 15, Parte 1. F. Fleischer, Leipzig

  6. Mohlenbrock R (1961) A monograph of the leguminous genus Zornia. Webbia 16(1):1–141. https://doi.org/10.1080/00837792.1961.10669720

    Article  Google Scholar 

  7. Sedefov R, Gallegos A, King L, Lopez D, Auwarter V, Hughes B, Griffiths P (2009) Understanding the spice phenomenon. European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) Portugal

  8. Schultes RE, Hofmann A (1979). Plants of the Gods, McGraw-Hill, New York. Reprinted in 1992, Healing arts, Rochester

  9. Von Reis S, Lipp FJ (1982) New plant sources for drugs and foods from the NY botanical garden herbarium. Harvard University Press

  10. Schultes RE, Farnsworth NR (1980) Ethnomedical, botanical and phytochemical aspects of natural hallucinogens. Bot Mus Leafl Harv Univ 28(2):123–214

    Google Scholar 

  11. López J (1981) Isolation of coumarin in Zornia diphylla L. Ing Cienc Quim 5:96–97

    Google Scholar 

  12. Igwe SA, Okawa ANC, Akunyili DN (2001) Preliminary phytochemical and pharmacological studies of Zornia latifolia extracts. Journal of Health and Visual Science 3:12–19

    Google Scholar 

  13. Rojas A, Rojas JI et al (1999) Spasmolytic activity of some plants used by the Otomi Indians of Queretaro (Mexico) for the treatment of gastrointestinal disorders. Phytomedicine 6(5):367–371. https://doi.org/10.1016/S0944-7113(99)80061-0

    Article  PubMed  CAS  Google Scholar 

  14. Arunkumar R, Ajikumaran Nair S, Subramoniam A (2012) Effectiveness of Zornia diphylla (L.) Pers, against fungal diseases. Ann Phytomed 1:81–89

    CAS  Google Scholar 

  15. Khare CP (2007) Indian medicinal plants: an illustrated dictionary. Springer-Verlag, Heidelberg

    Google Scholar 

  16. Geetha KM, Bhavya S, Murugan V (2012) Anticonvulsant activity of the methanolic extract of whole plant of Zornia diphylla (Linn) Pers. J Pharm Res 5(7):3670–3672

    Google Scholar 

  17. DeFilipps RA, Maina SL, Crepin J (2004) Medicinal plants of the Guianas (Guyana, Surinam, French Guiana). Natural Museum of Natural History. Smithsonian Institution, Washington DC

    Google Scholar 

  18. Clericuzio M, Burlando B, Borghesi B, Salis A, Damonte G, Ribulla S, Cornara L (2017) Antiproliferative hydroxy-fatty acids from the fodder legume Stylosanthes guianensis. J Pharm Biomed Anal 141:157–164

    Article  PubMed  CAS  Google Scholar 

  19. Pearse AG (1985) Histochemistry, Theoretical and applied, analytical technology. 4th Ed. Churchill Livingstone, New York

    Google Scholar 

  20. O’Brien TP, Feder N, Mccully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  21. Johansen DA (1940) Plant microtechnique. McGraw–Hill Book Co., New York

    Google Scholar 

  22. Lillie RD (1965) Histopathologic technic and practical histochemistry. McGraw–Hill Book Co, New York

    Google Scholar 

  23. Gerlach D (1969) Botanische Mikrotechnik: Eine Einführung. Georg Thieme, Stuttgart

    Google Scholar 

  24. Meira RMSA, Martins FM (2003) Técnica de inclusão de material herborizado em historesina. Rev Árvore 27(1):109–112. https://doi.org/10.1590/S0100-67622003000100015

    Article  Google Scholar 

  25. Vidal BC (1977) Acid glycosaminoglycans and endochondral ossification: microespectrophotometric evaluation and macromolecular orientation. Cell Mol Biol 22:45–64

    CAS  Google Scholar 

  26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  PubMed  CAS  Google Scholar 

  27. Mezzasalma V, Ganopoulos I, Galimberti A, Cornara L, Ferri E, Labra M (2017) Poisonous or non-poisonous plants? DNA-based tools and applications for accurate identification. Int J Legal Med 131(1):1–19. https://doi.org/10.1007/s00414-016-1460-y

    Article  PubMed  Google Scholar 

  28. Fay MF, Bayer C, Alverson WS, de Bruijn AY, Chase MW (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 47(1):43–50. https://doi.org/10.2307/1224017

    Article  Google Scholar 

  29. Dunning LT, Savolainen V (2010) Broad-scale amplification of matK for DNA barcoding plants, a technical note. Bot J Linn Soc 164(1):1–9. https://doi.org/10.1111/j.1095-8339.2010.01071.x

    Article  Google Scholar 

  30. Newmaster SG, Ragupathy S, Janovec J (2009) A botanical renaissance: state-of the- art DNA barcoding facilitates an automated identification technology system for plants. Int J Comput App Technol 35(1):50–60. https://doi.org/10.1504/IJCAT.2009.024595

    Article  Google Scholar 

  31. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci U S A 102(23):8369–8374. https://doi.org/10.1073/pnas.0503123102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Brubaker CL, Horner HT (1989) Development of epidermal crystals in leaflets of Stylosanthes guianensis (Leguminosae; Papilionoideae). Can J Bot 67(6):1664–1670. https://doi.org/10.1139/b89-210

    Article  Google Scholar 

  33. Da Silva Matos D, Leme FM, Dias ES, Arruda RCO (2013) Anatomia foliar de três espécies de Stylosanthes SW. e sua associação com a composição e formação potencial de fitobezoares em bovinos. Ciência Rural 43(11):2049–2055. https://doi.org/10.1590/S0103-84782013001100021

    Article  Google Scholar 

  34. Fortuna-Perez AP, Castro MM, Tozzi AMGA (2012) Leaflet secretory structures of five taxa of the genus Zornia J.F. Gmel. (Leguminosae, Papilionoideae, Dalbergieae) and their systematic significance. Plant Syst Evol 298(8):1415–1424. https://doi.org/10.1007/s00606-012-0647-z

    Article  Google Scholar 

  35. Pushpa B, Dayal R (1993) A flavone glycoside from Dalbergia stipulacea leaves. Phytochemistry 33(3):731–732

    Article  Google Scholar 

  36. De Mattia F, Bruni I, Galimberti A, Cattaneo F, Casiraghi M, Labra M (2011) A comparative study of different DNA barcoding markers for the identification of some members of Lamiaceae. Food Rev Int 44(3):693–702. https://doi.org/10.1016/j.foodres.2010.12.032

    Article  CAS  Google Scholar 

  37. De Mattia F, Gentili R, Bruni I, Galimberti A, Sgorbati S, Casiraghi M, Labra M (2012) A multi-marker DNA barcoding approach to save time and resources in vegetation surveys. Bot J Linn Soc 169:518–529

    Article  Google Scholar 

  38. Viola H, Wasowski C, Stein MLD, Wolfman C, Silveira R, Dajas F, Medina JH, Paladini AC (1995) Apigenin, a component of Matricaria recutita flowers, is a central benzodiazepines receptors-ligand with anxiolytic effects. Planta Med 61(03):213–216. https://doi.org/10.1055/s-2006-958058

    Article  PubMed  CAS  Google Scholar 

  39. Suresh K, Anupam S (2006) Apigenin: the anxiolytic constituent of Turnera aphrodisiaca. Pharm Biol 44(2):84–90

    Article  CAS  Google Scholar 

  40. Salgueiro JB, Ardenghi P, Dias M, Ferreira MBC, Izquierdo I, Medina JH (1997) Anxyolitic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol Biochem Behav 58(4):887–891. https://doi.org/10.1016/S0091-3057(97)00054-3

    Article  PubMed  CAS  Google Scholar 

  41. Rodrìguez-Landa JF, Hernàndez-Figueroa JD, Hernandez-Calderón BC, Saavedra M (2009) Anxiolytic-like effect of phytoestrogen genistein in rats with long-term absence of ovarian hormones in the black and white model. Prog Neuro-Psychopharmacol Biol Psychiatry 33(2):367–372. https://doi.org/10.1016/j.pnpbp.2008.12.024

    Article  CAS  Google Scholar 

  42. Huo X-J, Liu W, Qiu M-H, Huang Z-L, Qu W-M (2012) Genistein induces non-rapid eye movement sleep in mice. Sleep Biol Rhytms 10(4):278–286. https://doi.org/10.1111/j.1479-8425.2012.00571.x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Clericuzio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cornara, L., Fortuna-Perez, A.P., Bruni, I. et al. Zornia latifolia: a smart drug being adulterated by Stylosanthes guianensis. Int J Legal Med 132, 1321–1331 (2018). https://doi.org/10.1007/s00414-018-1774-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-018-1774-z

Keywords

Navigation