Skip to main content
Log in

Post-mortem whole-exome sequencing (WES) with a focus on cardiac disease-associated genes in five young sudden unexplained death (SUD) cases

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

An Erratum to this article was published on 10 March 2016

Abstract

Sudden death of healthy young adults in the absence of any medical reason is generally categorised as autopsy-negative sudden unexplained death (SUD). Approximately 30 % of all SUD cases can be explained by lethal sequence variants in cardiac genes causing disturbed ion channel functions (channelopathies) or minimal structural heart abnormalities (cardiomyopathies). The aim of this study was to perform whole-exome sequencing (WES) in five young SUD cases in order to identify potentially disease-causing mutations with a focus on 184 genes associated with cardiac diseases or sudden death. WES analysis enabled the identification of damaging-predicted cardiac sequence alterations in three out of five SUD cases. Two SUD victims carried disease-causing variants in long QT syndrome (LQTS)-associated genes (KCNH2, SCN5A). In a third case, WES identified variants in two genes involved in mitral valve prolapse and thoracic aortic aneurism (DCHS1, TGFβ2). The genome of a fourth case carried several minor variants involved in arrhythmia pointing to a multigene influence that might have contributed to sudden death. Our results confirm that post-mortem genetic testing in SUD cases in addition to the conventional autopsy can help to identify familial cardiac diseases and can contribute to the identification of genetic risk factors for sudden death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wren C, Sullivan JJ, Wright C (2000) Sudden death in children and adolescents. Heart 83:410–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van der Werf C, van Langen IM, Wilde AA (2010) Sudden death in the young: what do we know about it and how to prevent? Circ Arrhythm Electrophysiol 3:96–104. doi:10.1161/CIRCEP.109.877142

    Article  PubMed  Google Scholar 

  3. Ackerman MJ, Priori SG, Willems S, Berul C, Brugada R, Calkins H, Camm AJ, Ellinor PT, Gollob M, Hamilton R, Hershberger RE, Judge DP, Le Marec H, McKenna WJ, Schulze-Bahr E, Semsarian C, Towbin JA, Watkins H, Wilde A, Wolpert C, Zipes DP, Heart Rhythm S, European Heart Rhythm A (2011) HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies: this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8:1308–1339. doi:10.1093/europace/eur245

    Article  PubMed  Google Scholar 

  4. Tester DJ, Ackerman MJ (2012) The molecular autopsy: should the evaluation continue after the funeral? Pediatr Cardiol 33:461–470. doi:10.1007/s00246-012-0160-8

    Article  PubMed  PubMed Central  Google Scholar 

  5. Virmani R, Burke AP, Farb A (2001) Sudden cardiac death. Cardiovasc Pathol 10:1039–1044

    Article  Google Scholar 

  6. Hofer F, Fellmann F, Schläpfer J, Michaud K (2014) Sudden cardiac death in the young (5–39 years) in the canton of Vaud, Switzerland. Cardiovasc Disord 14:1471–2261

    Google Scholar 

  7. Cerrone M, Priori SG (2011) Genetics of sudden death: focus on inherited channelopathies. Eur Heart J 32:2109–2118. doi:10.1093/eurheartj/ehr082

    Article  PubMed  Google Scholar 

  8. Narula N, Tester DJ, Paulmichl A, Maleszewski JJ, Ackerman MJ (2014) Post-mortem whole exome sequencing with gene-specific analysis for autopsy-negative sudden unexplained death in the young: a case series. Pediatr Cardiol. doi:10.1007/s00246-014-1082-4

  9. Abriel H, Zaklyazminskaya EV (2013) Cardiac channelopathies: genetic and molecular mechanisms. Gene 517:1–11. doi:10.1016/j.gene.2012.12.061

    Article  CAS  PubMed  Google Scholar 

  10. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, Dubourg O, Kühl U, Maisch B, McKenna WJ, Moserrat L, Pankuweit S, Rapezzi C, Seferovic P, Tavazzi L, Keren A (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 29:270–276. doi:10.1093/eurheartj/ehm342, 10.1093/eurheartj/ehm585

  11. Campuzano O, Alcalde M, Berne P, Castro V, Guzzo G, Iglesias A, Alonso-Pulpon L, Garcia-Pavia P, Brugada J, Brugada R (2012) Genetic testing of candidate genes in arrhythmogenic right ventricular cardiomyopathy/dysplasia. Eur J Med Genet 55:225–234. doi:10.1016/j.ejmg.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  12. Loporcaro CG, Tester DJ, Maleszewski JJ, Kruisselbrink T, Ackerman MJ (2013) Confirmation of cause and manner of death via a comprehensive cardiac autopsy including whole exome next-generation sequencing. Arch Pathol Lab Med 138:1083–1089. doi:10.5858/arpa.2013-0479-SA

    Article  CAS  PubMed  Google Scholar 

  13. Campuzano O, Sanchez-Molero O, Allegue C, Coll M, Mademont-Soler I, Selga E, Ferrer-Costa C, Mates J, Iglesias A, Sarquella-Brugada G, Cesar S, Brugada J, Castella J, Medallo J, Brugada R (2014) Post-mortem genetic analysis in juvenile cases of sudden cardiac death. Forensic Sci Int 245C:30–37. doi:10.1016/j.forsciint.2014.10.004

    Article  CAS  Google Scholar 

  14. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM, Huff CD, Shannon PT, Jabs EW, Nickerson DA, Shendure J, Bamshad MJ (2010) Exome sequencing identifies the cause of a Mendelian disorder. Nat Genet 42:30–35. doi:10.1038/ng.499

    Article  CAS  PubMed  Google Scholar 

  15. Hertz CL, Christiansen SL, Ferrero-Miliani L, Fordyce SL, Dahl M, Holst AG, Ottesen GL, Frank-Hansen R, Bundgaard H, Morling N (2015) Next-generation sequencing of 34 genes in sudden unexplained death victims in forensics and in patients with channelopathic cardiac diseases. Int J Legal Med 129:793–800. doi:10.1007/s00414-014-1105-y

    Article  CAS  PubMed  Google Scholar 

  16. Behr E, Wood DA, Wright M, Syrris P, Sheppard MN, Casey A, Davies MJ, McKenna W (2003) Cardiological assessment of first-degree relatives in sudden arrhythmic death syndrome. Lancet 362:1457–1459. doi:10.1016/s0140-6736(03)14692-2

    Article  CAS  PubMed  Google Scholar 

  17. Stattin EL, Westin IM, Cederquist K, Jonasson J, Jonsson BA, Morner S, Norberg A, Krantz P, Wisten A (2015) Genetic screening in sudden cardiac death in the young can save future lives. Int J Legal Med. doi:10.1007/s00414-015-1237-8

  18. Haghighi A, Tiwari A, Piri N, Nurnberg G, Saleh-Gohari N, Haghighi A, Neidhardt J, Nurnberg P, Berger W (2014) Homozygosity mapping and whole exome sequencing reveal a novel homozygous COL18A1 mutation causing Knobloch syndrome. PLoS One 9, e112747. doi:10.1371/journal.pone.0112747

  19. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. doi:10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352

    Article  CAS  Google Scholar 

  21. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38, e164. doi:10.1093/nar/gkq603

  22. Attanasio C, David A, Neerman-Arbez M (2003) Outcome of donor splice site mutations accounting for congenital afibrinogenemia reflects order of intron removal in the fibrinogen alpha gene (FGA). Blood 101:1851–1856. doi:10.1182/blood-2002-03-0853

    Article  CAS  PubMed  Google Scholar 

  23. Zeek PM (1942) Heart weight I. The weight of the normal human heart. Arch Pathol 34:820–832

    Google Scholar 

  24. Roden DM (2008) Long-QT syndrome. N Engl J Med 358:169–176. doi:10.1056/NEJMcp0706513

    Article  CAS  PubMed  Google Scholar 

  25. Hayek E, Gring CN, Griffin BP (2005) Mitral valve prolapse. Lancet 365:507–518. doi:10.1016/s0140-6736(05)17869-6

    Article  PubMed  Google Scholar 

  26. Boileau C, Guo DC, Hanna N, Regalado ES, Detaint D, Gong L, Varret M, Prakash SK, Li AH, d’Indy H, Braverman AC, Grandchamp B, Kwartler CS, Gouya L, Santos-Cortez RL, Abifadel M, Leal SM, Muti C, Shendure J, Gross MS, Rieder MJ, Vahanian A, Nickerson DA, Michel JB, National Heart L, Blood Institute Go Exome Sequencing P, Jondeau G, Milewicz DM (2012) TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat Genet 44:916–921. doi:10.1038/ng.2348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Van Norstrand DW, Asimaki A, Rubinos C, Dolmatova E, Srinivas M, Tester DJ, Saffitz JE, Duffy HS, Ackerman MJ (2012) Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Circulation 125:474–481. doi:10.1161/CIRCULATIONAHA.111.057224

    Article  CAS  PubMed  Google Scholar 

  28. Gollob MH, Jones DL, Krahn AD, Danis L, Gong X-Q, Shao Q, Lui X, Veinot JP, Tang AS, Stewart AW, Tesson F, Klein GJ, Yee R, Skanes AC, Guiraudon GM, Ebihara L, Bai D (2006) Somatic mutations in the connexin 40 gene (GJA5) in atrial fibrillation. N Engl J Med 354:2677–2688

    Article  CAS  PubMed  Google Scholar 

  29. Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    CAS  PubMed  Google Scholar 

  30. Beavers DL, Wang W, Ather S, Voigt N, Garbino A, Dixit SS, Landstrom AP, Li N, Wang Q, Olivotto I, Dobrev D, Ackerman MJ, Wehrens XH (2013) Mutation E169K in junctophilin-2 causes atrial fibrillation due to impaired RyR2 stabilization. J Am Coll Cardiol 62:2010–2019. doi:10.1016/j.jacc.2013.06.052

    Article  CAS  PubMed  Google Scholar 

  31. Olesen MS, Jensen NF, Holst AG, Nielsen JB, Tfelt-Hansen J, Jespersen T, Sajadieh A, Haunso S, Lund JT, Calloe K, Schmitt N, Svendsen JH (2011) A novel nonsense variant in Nav1.5 cofactor MOG1 eliminates its sodium current increasing effect and may increase the risk of arrhythmias. Can J Cardiol 27(523):e517–523. doi:10.1016/j.cjca.2011.01.003

    Google Scholar 

  32. Wu L, Yong SL, Fan C, Ni Y, Yoo S, Zhang T, Zhang X, Obejero-Paz CA, Rho HJ, Ke T, Szafranski P, Jones SW, Chen Q, Wang QK (2008) Identification of a new co-factor, MOG1, required for the full function of cardiac sodium channel Nav 1.5. J Biol Chem 283:6968–6978. doi:10.1074/jbc.M709721200

    Article  CAS  PubMed  Google Scholar 

  33. Moss AJ (2002) Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation 105:794–799. doi:10.1161/hc0702.105124

    Article  CAS  PubMed  Google Scholar 

  34. Gong Q, Zhang L, Vincent GM, Horne BD, Zhou Z (2007) Nonsense mutations in hERG cause a decrease in mutant mRNA transcripts by nonsense-mediated mRNA decay in human long-QT syndrome. Circulation 116:17–24. doi:10.1161/CIRCULATIONAHA.107.708818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin NC, Huang CL, Chen CY, Lin TY, Wang HY, Lu YH, Chen LM, Chen VC, Gossop M (2014) Effect of amphetamine on corrected-QT interval change during methadone maintenance treatment in Taiwan: a prospective cohort study. Drug Alcohol Rev 33:194–201. doi:10.1111/dar.12099

    Article  PubMed  Google Scholar 

  36. van Noord C, Eijgelsheim M, Stricker BH (2010) Drug- and non-drug-associated QT interval prolongation. Br J Clin Pharmacol 70:16–23. doi:10.1111/j.1365-2125.2010.03660.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Crotti L, Hu D, Barajas-Martinez H, De Ferrari GM, Oliva A, Insolia R, Pollevick GD, Dagradi F, Guerchicoff A, Greco F, Schwartz PJ, Viskin S, Antzelevitch C (2012) Torsades de pointes following acute myocardial infarction: evidence for a deadly link with a common genetic variant. Heart Rhythm 9:1104–1112. doi:10.1016/j.hrthm.2012.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  38. Crotti L, Lundquist AL, Insolia R, Pedrazzini M, Ferrandi C, De Ferrari GM, Vicentini A, Yang P, Roden DM, George AL Jr, Schwartz PJ (2005) KCNH2-K897T is a genetic modifier of latent congenital long-QT syndrome. Circulation 112:1251–1258. doi:10.1161/CIRCULATIONAHA.105.549071

    Article  PubMed  Google Scholar 

  39. Kato K, Makiyama T, Wu J, Ding WG, Kimura H, Naiki N, Ohno S, Itoh H, Nakanishi T, Matsuura H, Horie M (2014) Cardiac channelopathies associated with infantile fatal ventricular arrhythmias: from the cradle to the bench. J Cardiovasc Electrophysiol 25:66–73. doi:10.1111/jce.12270

    Article  PubMed  Google Scholar 

  40. Horigome H, Nagashima M, Sumitomo N, Yoshinaga M, Ushinohama H, Iwamoto M, Shiono J, Ichihashi K, Hasegawa S, Yoshikawa T, Matsunaga T, Goto H, Waki K, Arima M, Takasugi H, Tanaka Y, Tauchi N, Ikoma M, Inamura N, Takahashi H, Shimizu W, Horie M (2010) Clinical characteristics and genetic background of congenital long-QT syndrome diagnosed in fetal, neonatal, and infantile life: a nationwide questionnaire survey in Japan. Circ Arrhythm Electrophysiol 3:10–17. doi:10.1161/CIRCEP.109.882159

    Article  PubMed  Google Scholar 

  41. Gui J, Wang T, Trump D, Zimmer T, Lei M (2010) Mutation-specific effects of polymorphism H558R in SCN5A-related sick sinus syndrome. J Cardiovasc Electrophysiol 21:564–573. doi:10.1111/j.1540-8167.2010.01762.x

    Article  PubMed  Google Scholar 

  42. Kauferstein S, Kiehne N, Peigneur S, Tytgat J, Bratzke H (2013) Cardiac channelopathy causing sudden death as revealed by molecular autopsy. Int J Legal Med 127:145–151. doi:10.1007/s00414-012-0679-5

    Article  PubMed  Google Scholar 

  43. Iyer VR, Chin AJ (2013) Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). Am J Med Genet C: Semin Med Genet. doi:10.1002/ajmg.c.31368

  44. Morey M, Fernandez-Marmiesse A, Castineiras D, Fraga JM, Couce ML, Cocho JA (2013) A glimpse into past, present, and future DNA sequencing. Mol Genet Metab 110:3–24. doi:10.1016/j.ymgme.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  45. Stitziel NO, Kiezun A, Sunyaev S (2011) Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome Biol 12. doi:10.1186/gb-2011-12-9-227

  46. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER (2013) The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38. doi:10.1016/j.cell.2013.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Killeen MJ (2009) Drug-induced arrhythmias and sudden cardiac death: implications for the pharmaceutical industry. Drug Discov Today 14:589–597. doi:10.1016/j.drudis.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  48. Michaud K, Fellmann F, Abriel H, Beckmann JS, Mangin P, Elger BS (2009) Molecular autopsy in sudden cardiac death and its implication for families: discussion of the practical, legal and ethical aspects of the multidisciplinary collaboration. Swiss Med Wkly 139:712–718

    PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the Swiss National Science Foundation (SNF, project-Nr. 320030_149456). Special thanks to Luzy Bähr and Silke Feil for technical support, to Barbara Fliss for the colour images of the histological sections, and to Claudine Rieubland for additional information regarding the family history of case V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Neubauer.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 538 kb)

ESM 2

(PDF 662 kb)

ESM 3

(PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neubauer, J., Haas, C., Bartsch, C. et al. Post-mortem whole-exome sequencing (WES) with a focus on cardiac disease-associated genes in five young sudden unexplained death (SUD) cases. Int J Legal Med 130, 1011–1021 (2016). https://doi.org/10.1007/s00414-016-1317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1317-4

Keywords

Navigation