Skip to main content

Advertisement

Log in

Electrostatic sampling of trace DNA from clothing

  • Short Communication
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

During acts of physical aggression, offenders frequently come into contact with clothes of the victim, thereby leaving traces of DNA-bearing biological material on the garments. Since tape-lifting and swabbing, the currently established methods for non-destructive trace DNA sampling from clothing, both have their shortcomings in collection efficiency and handling, we thought about a new collection method for these challenging samples. Testing two readily available electrostatic devices for their potential to sample biological material from garments made of different fabrics, we found one of them, the electrostatic dust print lifter (DPL), to perform comparable to well-established sampling with wet cotton swabs. In simulated aggression scenarios, we had the same success rate for the establishment of single aggressor profiles, suitable for database submission, with both the DPL and wet swabbing. However, we lost a substantial amount of information with electrostatic sampling, since almost no mixed aggressor-victim profiles suitable for database entry could be established, compared to conventional swabbing. This study serves as a proof of principle for electrostatic DNA sampling from items of clothing. The technique still requires optimization before it might be used in real casework. But we are confident that in the future it could be an efficient and convenient contribution to the toolbox of forensic practitioners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Goray M, Mitchell RJ, van Oorschot RAH (2010) Investigation of secondary DNA transfer of skin cells under controlled test conditions. Legal Med Tokyo 12(3):117–120. doi:10.1016/j.legalmed.2010.01.003

    Article  CAS  Google Scholar 

  2. Goray M, Eken E, Mitchell RJ, van Oorschot RAH (2010) Secondary DNA transfer of biological substances under varying test conditions. Forensic Sci Int Gen 4(2):62–67. doi:10.1016/j.fsigen.2009.05.001

    Article  CAS  Google Scholar 

  3. Verdon TJ, Mitchell RJ, van Oorschot RAH (2013) The influence of substrate on DNA transfer and extraction efficiency. Forensic Sci Int Gen 7(1):167–175. doi:10.1016/j.fsigen.2012.09.004

    Article  CAS  Google Scholar 

  4. Stouder SL, Reubush KJ, Hobson DL, Smith JL (2001) Trace Evidence Scrapings: A Valuable Source of DNA? Forensic Sci Commun 3(4)

  5. Hansson O, Finnebraaten M, Heitmann IK, Ramse M, Bouzga M (2009) Trace DNA collection—performance of minitape and three different swabs. Forensic Sci Int Gen 2(1):189–190. doi:10.1016/j.fsigss.2009.08.098

    Article  Google Scholar 

  6. Verdon TJ, Mitchell RJ, van Oorschot RA (2014) Evaluation of tapelifting as a collection method for touch DNA. Forensic Sci Int Gen 8(1):179–186. doi:10.1016/j.fsigen.2013.09.005

    Article  CAS  Google Scholar 

  7. Quinones I, Daniel B (2012) Cell free DNA as a component of forensic evidence recovered from touched surfaces. Forensic Sci Int Gen 6(1):26–30. doi:10.1016/j.fsigen.2011.01.004

    Article  CAS  Google Scholar 

  8. Meakin G, Jamieson A (2013) DNA transfer: review and implications for casework. Forensic Sci Int Gen 7(4):434–443. doi:10.1016/j.fsigen.2013.03.013

    Article  CAS  Google Scholar 

  9. Plaza DT, Mealy JL, Lane JN, Parsons MN, Bathrick AS, Slack DP (2015) ESDA(R)-lite collection of DNA from latent fingerprints on documents. Forensic Sci Int Gen 16:8–12. doi:10.1016/j.fsigen.2014.11.011

    Article  CAS  Google Scholar 

  10. vanOorschot RAH, Jones MK (1997) DNA fingerprints from fingerprints. Nature 387(6635):767. doi:10.1038/42838

    Article  CAS  Google Scholar 

  11. van Oorschot RA, Ballantyne KN, Mitchell RJ (2010) Forensic trace DNA: a review. Investig Genet 1(1):14. doi:10.1186/2041-2223-1-14

    Article  Google Scholar 

  12. Wickenheiser RA (2002) Trace DNA: a review, discussion of theory, and application of the transfer of trace quantities of DNA through skin contact. J Forensic Sci 47(3):442–450

    CAS  PubMed  Google Scholar 

  13. Shalhoub R, Quinones I, Ames C, Multaney B, Curtis S, Seeboruth H, Moore S, Daniel B (2008) The recovery of latent fingermarks and DNA using a silicone-based casting material. Forensic Sci Int 178(2-3):199–203. doi:10.1016/j.forsciint.2008.04.001

    Article  CAS  Google Scholar 

  14. Jiang X (2009) One method of collecting fallen off epithelial cell. Forensic Sci Int Gen 2(1):193. doi:10.1016/j.fsigss.2009.09.027

    Article  Google Scholar 

  15. Farash K, Hanson EK, Ballantyne J (2015) Enhanced genetic analysis of single human bioparticles recovered by simplified micromanipulation from forensic ‘touch DNA’ evidence. J Vis Exp: JoVE (97). doi:10.3791/52612

  16. Bright JA, Petricevic SF (2004) Recovery of trace DNA and its application to DNA profiling of shoe insoles. Forensic Sci Int 145(1):7–12. doi:10.1016/j.forsciint.2004.03.016

    Article  CAS  Google Scholar 

  17. May R, Thomson J (2009) Optimisation of cellular DNA recovery from tape-lifts. Forensic Sci Int Gen 2(1):191–192. doi:10.1016/j.fsigss.2009.08.115

    Article  Google Scholar 

  18. Barash M, Reshef A, Brauner P (2010) The use of adhesive tape for recovery of DNA from crime scene items. J Forensic Sci 55(4):1058–1064. doi:10.1111/j.1556-4029.2010.01416.x

    Article  Google Scholar 

  19. Zilinskas PJ, Lozovski T, Jankauskas V, Jurksus J (2013) Electrostatic properties and characterization of textile materials affected by ion flux. Mater Sci Medzg 19(1):61–66. doi:10.5755/j01.ms.19.1.3828

    Google Scholar 

  20. Goray M, van Oorschot RA (2015) The complexities of DNA transfer during a social setting. Legal Med Tokyo 17(2):82–91. doi:10.1016/j.legalmed.2014.10.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Monique Zimmermann, Christoph Schneider, and Emma Stoisser for technical assistance, Britta Stoop and Mirco Hecht for critical reading of the manuscript, and all volunteers for their willingness to participate in the simulated aggression experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Zieger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zieger, M., Defaux, P.M. & Utz, S. Electrostatic sampling of trace DNA from clothing. Int J Legal Med 130, 661–667 (2016). https://doi.org/10.1007/s00414-015-1312-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-015-1312-1

Keywords

Navigation