Skip to main content
Log in

Haplotype block: a new type of forensic DNA markers

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Forensic DNA analysis is currently performed using highly discriminating short tandem repeat (STR) markers. SNPs are being investigated as adjunct tools for human identity testing because of their abundance in the human genome, utility for genotyping degraded DNA samples, and amenability to automation. While SNPs can provide an alternative approach, on a per locus basis they have a lower power of discrimination (PD) than STRs. With the discovery of block structures in the human genome, a novel set of SNP markers are available for further exploration of forensic utility. Several neighboring, tightly linked SNPs are inherited together and form a haplotype block, which as a haploblock has a higher discrimination power than the individual SNPs within the block. Candidate haplotype blocks were selected from three major populations (Caucasian, East Asian, and African) using the following parameters: maximum match probability reduction = 0.85, linkage disequilibrium (LD) r 2 ≥ 0.7, maximum F st = 0.06, minimum number of SNPs = 3, minimum heterozygosity = 0.2, and minimum number of haplotypes = 3. From the HapMap Phase II data, 253 haploblocks were identified on the 22 autosomal chromosomes. After removing haploblocks deviating from the Hardy–Weinberg equilibrium (HWE) or in LD with other haploblocks, 24 haploblocks remained as candidates for forensic consideration. The cumulative PD of these blocks can reach 10−12 in the populations studied. The data support within and between haplotype independence even when they are syntenic. We propose guidelines for evidence interpretation that address the application of haplotype blocks for transfer evidence, mixture, and kinship analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chakraborty R, Stivers DN, Su B, Zhong Y, Budowle B (2000) The utility of STR loci beyond human identification: implications for the development of new DNA typing systems. Electrophoresis 20:1682–1696

    Article  Google Scholar 

  2. Budowle B, Shea B, Niezgoda S, Chakraborty R (2001) CODIS STR loci data from 41 sample populations. J Forensic Sci 46(3):453–489

    CAS  PubMed  Google Scholar 

  3. Gill P (2001) An assessment of the utility of single nucleotide polymorphisms (SNPs) for forensic purposes. Int J Legal Med 114:204–210

    Article  CAS  PubMed  Google Scholar 

  4. Amorim A, Pereira L (2005) Pros and cons in the use of SNPs in forensic kinship investigation: a comparative analysis with STRs. Foren Sci Int 150:17–21

    Article  CAS  Google Scholar 

  5. Budowle B, van Daal A (2008) Forensically relevant SNP classes. Biotechniques 44:603–610

    Article  CAS  PubMed  Google Scholar 

  6. Phillips C, Fondevila M, García-Magarinos M, Rodriguez A, Salas A, Carracedo A, Lareu MV (2008) Resolving relationship tests that show ambiguous STR results using autosomal SNPs as supplementary markers. Forensic Sci Int Genet 2:198–204

    Article  CAS  PubMed  Google Scholar 

  7. Kidd KK, Pakstis AJ et al (2006) Developing a SNP panel for forensic identification of individuals. Forensic Sci Int 164:20–32

    Article  CAS  PubMed  Google Scholar 

  8. Vallone PM, Decker AE, Butler JM (2005) Allele frequencies for 70 autosomal SNP loci with U.S. Caucasian, African American, and Hispanic samples. Foren Sci Int 149:279–286

    Article  CAS  Google Scholar 

  9. Dixon LA, Murray CM, Archer EJ, Dobbins AE, Koumi P, Gill P (2005) Validation of a 21-locus autosomal SNP multiplex for forensic identification purposes. Forensic Sci Int 154:62–77

    Article  CAS  PubMed  Google Scholar 

  10. Sanchez JJ, Phillips C, Borsting C et al (2006) A multiplex assay with 52 single nucleotide polymorphisms for human identification. Electrophoresis 27(9):1713–1724

    Article  CAS  PubMed  Google Scholar 

  11. Pakstis AJ, Speed WC, Kidd JR, Kidd KK (2007) Candidate SNPs for a universal individual identification panel. Hum Genet 121:305–317

    Article  PubMed  Google Scholar 

  12. Amigo J, Phillips C, Lareu M, Carracedo Á (2008) The SNP for ID browser: an online tool for query and display of frequency data from the SNP for ID project. Int J Legal Med 122:435–440

    Article  PubMed  Google Scholar 

  13. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232

    Article  CAS  PubMed  Google Scholar 

  14. McVean GA, Myers SR, Hunt S, Deloukas P et al (2004) The fine-scale structure of recombination rate variation in the human genome. Science 23(304):581–584

    Article  Google Scholar 

  15. Gabriel SB, Schaffner SF, Nguyen H et al (2002) The structure of haplotype blocks in the human genome. Science 296:2225–2229

    Article  CAS  PubMed  Google Scholar 

  16. International HapMap Consortium (2003) The international HapMap project. Nature 406:789–796

    Google Scholar 

  17. Patil N, Berno AJ, Hinds DA, Barrett WA et al (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:1719–1723

    Article  CAS  PubMed  Google Scholar 

  18. Wang N, Akey JM, Zhang K, Chakraborty R, Jin J (2002) Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet 71:1227–1234

    Article  CAS  PubMed  Google Scholar 

  19. Devlin B, Risch N (1995) A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29:311–322

    Article  CAS  PubMed  Google Scholar 

  20. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer, Sunderland

    Google Scholar 

  21. Chakraborty R, Jin L (1993) Determination of relatedness between individuals using DNA fingerprinting. Hum Biol 65:875–895

    CAS  PubMed  Google Scholar 

  22. Papiha SS, Deka R, Chakraborty R (1999) Genomic diversity: applications in human population genetics. Kluwer/Plenum, New York

    Google Scholar 

  23. Evett IW, Weir BS (1998) Interpreting DNA evidence. Sinauer, Sunderland, MA

    Google Scholar 

  24. Thompson EA (1975) The estimation of pairwise relationships. Ann Hum Genet 39:173–188

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Rowe WL, Clark AG, Buetow KH (2003) Genome wide distribution of high-frequency, completely mismatching SNP haplotype pairs observed to be common across human populations. Am J Hum Genet 73:1073–1081

    Article  CAS  PubMed  Google Scholar 

  26. NRC II, National Research Council Committee on DNA Forensic Science (1996) The evaluation of forensic DNA evidence. National Academy Press, Washington, DC

    Google Scholar 

  27. Reich DE, Schaffner SF, Daly MJ, McVean G, Mullikin JC, Higgins JM, Richter DJ, Lander ES, Altshuler D (2002) Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 32:135–140

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianye Ge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, J., Budowle, B., Planz, J.V. et al. Haplotype block: a new type of forensic DNA markers. Int J Legal Med 124, 353–361 (2010). https://doi.org/10.1007/s00414-009-0400-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-009-0400-5

Keywords

Navigation