Skip to main content

Advertisement

Log in

Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

Immunohistochemical study combined with morphometry was carried out to examine the expression of oxygen-regulated protein 150 (ORP150) using 58 human skin wounds of different ages (group I, 0–12 h; II, 1–5 days; III, 7–14 days; and IV, 17–21 days). In human wound specimens aged 4–12 h, neutrophils recruited at the wound showed no positive signals for ORP150. With the increase in wound age of ≥7 days, granulation tissue and angiogenesis were observed, with the migration of macrophages and fibroblasts with ORP150-positive reactions. In semi-quantitative analysis, the average of ORP150-positive ratios in group III was highest. In group III, all samples had an ORP150-positive ratio of >40%, and 17 samples showed >50%. In group IV, three out of ten samples showed a positive ratio of 40–45% and the remaining seven cases less than 40%. Collectively, with regard to the practical applicability with forensic safety, these observations suggest that an ORP150-positive ratio of >50% strongly indicates a wound age of 7–14 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raekallio J (1972) Determination of the age of wounds by histochemical and biochemical methods. Forensic Sci Int 1:3–16

    Article  CAS  Google Scholar 

  2. Laiho K (1998) Myeloperoxidase activity in skin lesions. I. Influence of the loss of blood, depth of excoriation and thickness of the skin. Int J Legal Med 111:6–9

    Article  PubMed  CAS  Google Scholar 

  3. Laiho K (1998) Myeloperoxidase activity in skin lesions. II. Influence of alcohol and some medicines. Int J Legal Med 111:10–12

    Article  PubMed  CAS  Google Scholar 

  4. Eisenmenger W, Nerlich A, Glück G (1988) Die Bedeutung des Kollagens bei Wundaltersbestimmung. Z Rechtsmed 100:79–100

    Article  PubMed  CAS  Google Scholar 

  5. Oehmichen M (1990) Die Wundheilung. Springer, Berlin, pp 5–67

    Google Scholar 

  6. Oehmichen M, Cröpelin A (1995) Temporal course of intravital and postmortem proliferation of epidermal cells after injury—an immunohistochemical study using bromodeoxyuridine in rats. Int J Legal Med 107:257–262

    Article  PubMed  CAS  Google Scholar 

  7. Betz P (1994) Histological and enzyme histochemical parameters for the age estimation of human skin wounds. Int J Legal Med 107:60–68

    Article  PubMed  CAS  Google Scholar 

  8. Betz P, Eisenmenger W (1996) Morphometrical analysis of hemosiderin deposits in relation to wound age. Int J Legal Med 108:262–264

    Article  PubMed  CAS  Google Scholar 

  9. Dressler J, Busuttil A, Koch R, Harrison DJ (2001) Sequence of melanocyte migration into human scar tissue. Int J Legal Med 115:61–63

    Article  PubMed  CAS  Google Scholar 

  10. Kondo T (2007) Timing of skin wounds. Legal Med 9:109–114

    Article  PubMed  Google Scholar 

  11. Martin P (1997) Wound healing—aiming for perfect skin regeneration. Science 276:75–81

    Article  PubMed  CAS  Google Scholar 

  12. Singer AJ, Clark RA (1999) Cutaneous wound healing. N Engl J Med 341:738–746

    Article  PubMed  CAS  Google Scholar 

  13. Ishida Y, Kondo T, Takayasu T, Iwakura Y, Mukaida N (2004) The essential involvement of cross-talk between IFN-g and TGF-b in the skin wound-healing process. J Immunol 172:1848–1855

    PubMed  CAS  Google Scholar 

  14. Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N (2003) Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 73:713–721

    Article  PubMed  CAS  Google Scholar 

  15. Mori R, Kondo T, Ohshima T, Ishida Y, Mukaida N (2002) Accelerated wound healing in tumor necrosis factor receptor p55-deficient mice with reduced leukocyte infiltration. FASEB J 16:963–974

    Article  PubMed  CAS  Google Scholar 

  16. Ishida Y, Kondo T, Kimura A, Matsushima K, Mukaida N (2006) Absence of IL-1 receptor antagonist impaired wound healing along with aberrant NF-κB activation and a reciprocal suppression of TGF-β signal pathway. J Immunol 176:5598–5606

    PubMed  CAS  Google Scholar 

  17. Ishida Y, Gao JL, Murphy PM (2008) Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol 180:569–579

    PubMed  CAS  Google Scholar 

  18. Betz P, Nerlich A, Wilske J, Tübel J, Wiest I, Penning R, Eisenmenger W (1992) Immunohistochemical localization of fibronectin as a tool for the age determination of human skin wounds. Int J Legal Med 105:21–26

    Article  PubMed  CAS  Google Scholar 

  19. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993) Analysis of the immunohistochemical localization of collagen type III and V for the time-estimation of human skin wounds. Int J Legal Med 105:329–332

    Article  PubMed  CAS  Google Scholar 

  20. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1993) Immunohistochemical localization collagen types I and VI in human skin wounds. Int J Legal Med 106:31–34

    Article  PubMed  CAS  Google Scholar 

  21. Betz P (1995) Immunohistochemical parameters for the age estimation of human skin wounds. A review. Am J Forensic Med Pathol 16:203–209

    Article  PubMed  CAS  Google Scholar 

  22. Betz P, Nerlich A, Tübel J, Wiest I, Hausmann R (1997) Detection of cell death in human skin wounds of various ages by an in situ end labeling of nuclear DNA fragments. Int J Legal Med 110:240–243

    Article  PubMed  CAS  Google Scholar 

  23. Dreßler J, Bachmann L, Kasper M, Hauck JG, Müller E (1997) Time dependence of the expression ICAM (CD-54) in human skin wound. Int J Legal Med 110:299–304

    Article  PubMed  Google Scholar 

  24. Dreßler J, Bachmann L, Koch R, Müller E (1998) Enhanced expression of selectins in human skin wounds. Int J Legal Med 112:39–44

    Article  Google Scholar 

  25. Dreßler J, Bachmann L, Koch R, Müller E (1999) Estimation of wound age and VCAM-1 in human skin. Int J Legal Med 112:159–162

    Article  PubMed  Google Scholar 

  26. Kondo T, Ohshima T (1996) The dynamics of inflammatory cytokines in the healing process of mouse skin wound: a preliminary study for possible wound age determination. Int J Legal Med 108:231–236

    Article  PubMed  CAS  Google Scholar 

  27. Kondo T, Ohshima T, Eisenmenger W (1999) Immunohistochemical and morphometrical study on the temporal expression of interleukin-1a (IL-1a) in human skin wounds for forensic wound age determination. Int J Legal Med 112:249–252

    Article  PubMed  CAS  Google Scholar 

  28. Kondo T, Ohshima T, Mori R, Guan DW, Ohshima K, Eisenmenger W (2002) Immunohistochemical detection of chemokines in human skin wounds and its application to wound age determination. Int J Legal Med 116:87–91

    Article  PubMed  CAS  Google Scholar 

  29. Ohshima T, Sato Y (1998) Time-dependent expression of interleukin-10 (IL-10) mRNA during the early phase of skin wound healing as possible indicator of wound vitality. Int J Legal Med 1998:251–255

    Article  Google Scholar 

  30. Guan D, Ohshima T, Kondo T (2000) Immunohistochemical study on Fas and Fas ligand in skin wound healing. Histochem J 32:85–91

    Article  PubMed  CAS  Google Scholar 

  31. Sato Y, Ohshima T (2000) The expression of mRNA by proinflammatory cytokines during skin wound healing in mice: a preliminary study for forensic wound age estimation (II). Int J Legal Med 113:140–145

    Article  PubMed  CAS  Google Scholar 

  32. Rebolledo Godoy M, Rebolledo Godoy AP, Oehmichen M (2000) AgNORs during the process of wound healing. Time dependency as evaluated in vital and postmortem biopsy. Int J Legal Med 113:244–246

    Article  PubMed  CAS  Google Scholar 

  33. Kondo T, Tanaka J, Ishida Y, Mori R, Takayasu T, Ohshima T (2002) Ubiquitin expression in skin wounds and its application to forensic wound age determination. Int J Legal Med 116:267–272

    Article  PubMed  CAS  Google Scholar 

  34. Hausmann R, Betz P (2001) Course of glial immunoreactivity for vimentin, tenascin and alpha1-antichymotrypsin after traumatic injury to human brain. Int J Legal Med 114:338–342

    Article  PubMed  CAS  Google Scholar 

  35. Hausmann R, Betz P (2000) The time course of the vascular response to human brain injury—an immunohistochemical study. Int J Legal Med 113:288–292

    Article  PubMed  CAS  Google Scholar 

  36. Hausmann R, Riess R, Fieguth A, Betz P (2000) Immunohistochemical investigations on the course of astroglial GFAP expression following human brain injury. Int J Legal Med 113:70–75

    Article  PubMed  CAS  Google Scholar 

  37. Hausmann R, Kaiser A, Lang C, Bohnert M, Betz P (1999) A quantitative immunohistochemical study on the time-dependent course of acute inflammatory cellular response to human brain injury. Int J Legal Med 112:227–232

    Article  PubMed  CAS  Google Scholar 

  38. Hayashi T, Ishida Y, Kimura A, Takayasu T, Eisenmenger W, Kondo T (2004) Forensic application of VEGF expression to skin wound age determination. Int J Legal Med 118:320–325

    Article  PubMed  Google Scholar 

  39. Takamiya M, Saigusa K, Nakayashiki N, Aoki Y (2003) Studies on mRNA expression of basic fibroblast growth factor in wound healing for wound age determination. Int J Legal Med 117:46–50

    PubMed  Google Scholar 

  40. Dreßler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121:365–375

    Article  PubMed  Google Scholar 

  41. Hausmann R, Seidl S, Betz P (2006) Hypoxic changes in Purkinje cells of the human cerebellum. Int J Legal Med 12:175–183

    Google Scholar 

  42. Hausmann R, Vogel C, Seidl S, Betz P (2006) Value of morphological parameters for grading of brain swelling. Int J Legal Med 120:219–225

    Article  PubMed  CAS  Google Scholar 

  43. Hausmann R, Biermann T, Wiest I, Tübel J, Betz P (2004) Neuronal apoptosis following human brain injury. Int J Legal Med 118:32–36

    Article  PubMed  CAS  Google Scholar 

  44. Kuwabara K, Matsumoto M, Ikeda J, Hori O, Ogawa S, Maeda Y, Kitagawa K, Imuta N, Kinoshita T, Stern DM, Yanagi H, Kamada T (1996) Purification and characterization of a novel stress protein, the 150-kDa oxygen-regulated protein (ORP150), from cultured rat astrocytes and its expression in ischemic mouse brain. J Biol Chem 271:5025–5032

    Article  PubMed  CAS  Google Scholar 

  45. Ikeda J, Kaneda S, Kuwabara K, Ogawa S, Kobayashi T, Matsumoto M, Yura T, Yanagi H (1997) Cloning and expression of cDNA encoding the human 150 kDa oxygen-regulated protein, ORP150. Biochem Biophys Res Commun 230:94–99

    Article  PubMed  CAS  Google Scholar 

  46. Tamatani M, Matsuyama T, Yamaguchi A, Mitsuda N, Tsukamoto Y, Taniguchi M, Che YH, Ozawa K, Hori O, Nishimura H, Yamashita A, Okabe M, Yanagi H, Stern DM, Ogawa S, Tohyama M (2001) ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat Med 7:317–323

    Article  PubMed  CAS  Google Scholar 

  47. Tsukamoto Y, Kuwabara K, Hirota S, Ikeda J, Stern D, Yanagi H, Matsumoto M, Ogawa S, Kitamura Y (1996) 150-kD oxygen-regulated protein is expressed in human atherosclerotic plaques and allows mononuclear phagocytes to withstand cellular stress on exposure to hypoxia and modified low density lipoprotein. J Clin Invest 98:1930–1941

    Article  PubMed  CAS  Google Scholar 

  48. Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani Y, Hatazaki M, Tamatani T, Yamagata K, Miyagawa J, Kitao Y, Hori O, Yamasaki Y, Ogawa S (2005) The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes 54:657–663

    Article  PubMed  CAS  Google Scholar 

  49. Ozawa K, Tsukamoto Y, Hori O, Kitao Y, Yanagi H, Stern DM, Ogawa S (2001) Regulation of tumor angiogenesis by oxygen-regulated protein 150, an inducible endoplasmic reticulum chaperone. Cancer Res 61:4206–4213

    PubMed  CAS  Google Scholar 

  50. Kitao Y, Ozawa K, Miyazaki M, Tamatani M, Kobayashi T, Yanagi H, Okabe M, Ikawa M, Yamashima T, Stern DM, Hori O, Ogawa S (2001) Expression of the endoplasmic reticulum molecular chaperone (ORP150) rescues hippocampal neurons from glutamate toxicity. J Clin Invest 108:1439–1450

    PubMed  CAS  Google Scholar 

  51. Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, Ogawa S, Ohshima T (2001) Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. J Clin Invest 108:41–50

    PubMed  CAS  Google Scholar 

  52. Kitao Y, Hashimoto K, Matsuyama T, Iso H, Tamatani T, Hori O, Stern DM, Kano M, Ozawa K, Ogawa S (2004) ORP150/HSP12A regulates Purkinje cell survival: a role for endoplasmic reticulum stress in cerebellar development. J Neurosci 24:1486–1496

    Article  PubMed  CAS  Google Scholar 

  53. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309

    Article  PubMed  CAS  Google Scholar 

  54. Ferrara N, Henzel WJ (1989) Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161:851–858

    Article  PubMed  CAS  Google Scholar 

  55. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    PubMed  CAS  Google Scholar 

  56. Betz P, Nerlich A, Wilske J, Tübel J, Penning R, Eisenmenger W (1992) Time-dependent appearance of myofibroblasts in granulation tissue of human skin wounds. Int J Legal Med 105:99–103

    Article  PubMed  CAS  Google Scholar 

  57. Ikematsu K, Tsuda R, Kondo T, Kondo H, Ozawa K, Ogawa S, Nakasono I (2004) The expression of ‘150-kDa oxygen regulated protein (ORP-150)’ in human brain and its relationship with duration time until death. Legal Med 6:97–101

    Article  PubMed  CAS  Google Scholar 

  58. Ikematsu K, Tsuda R, Kondo T, Kondo H, Ozawa K, Ogawa S, Nakasono I (2003) The expression of a novel stress protein ‘150-kDa oxygen regulated protein’ in sudden infant death. Legal Med 5:15–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was financially supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Science, Sports and Culture of Japan. We sincerely thank Ms. Mariko Kawaguchi for her excellent assistant in preparing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kondo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishida, Y., Kimura, A., Takayasu, T. et al. Expression of oxygen-regulated protein 150 (ORP150) in skin wound healing and its application for wound age determination. Int J Legal Med 122, 409–414 (2008). https://doi.org/10.1007/s00414-008-0255-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-008-0255-1

Keywords

Navigation