Skip to main content

Advertisement

Log in

Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in grasshoppers

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Sex chromosomes have evolved many times from morphologically identical autosome pairs, most often presenting several recombination suppression events, followed by accumulation of repetitive DNA sequences. In Orthoptera, most species have an X0♂ sex chromosome system. However, in the subfamily Melanoplinae, derived variants of neo-sex chromosomes (neo-XY♂ or neo-X1X2Y♂) emerged several times. Here, we examined the differentiation of neo-sex chromosomes in a Melanoplinae species with a neo-XY♂/XX♀ system, Ronderosia bergi, using several approaches: (i) classical cytogenetic analysis, (ii) mapping via fluorescent in situ hybridization of some selected repetitive DNA sequences and microdissected sex chromosomes, and (iii) immunolocalization of distinct histone modifications. The microdissected sex chromosomes were also used as sources for Polymerase chain reaction (PCR) amplification of RNA-coding multigene families, to study variants related to the sex chromosomes. Our data suggest that the R. bergi neo-Y has become differentiated after its formation by a Robertsonian translocation and inversions, and has accumulated repetitive DNA sequences. Interestingly, the ex autosomes incorporated into the neo-sex chromosomes retain some autosomal post-translational histone modifications, at least in metaphase I, suggesting that the establishment of functional modifications in neo-sex chromosomes is slower than their sequence differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

2n :

Diploid number

♀gDNA:

Female genomic DNA

BSA:

Bovine serum albumin

C 0 t-1 DNA:

C 0 is the initial concentration of single-stranded DNA in moles per liter and t is the reannealing time in seconds

DAPI:

4′,6-Diamidine-2′-phenylindole

FISH:

Fluorescence in situ hybridization

mya:

Million years ago

PBS:

Phosphate-buffered saline

PCR:

Polymerase chain reaction

Rb-translocation:

Robertsonian translocation

rDNA:

Ribosomal DNA

rRNA:

Ribosomal RNA

snRNA:

Small nuclear RNA

μX-DNA:

X chromosome DNA obtained by microdissection

μY-DNA:

Y chromosome DNA obtained by microdissection

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bachtrog D (2006) A dynamic view of sex chromosome evolution. Curr Opin Genetic Dev 16:578–585

    Article  CAS  Google Scholar 

  • Bergero R, Forrest A, Kamau E, Charlesworth D (2007) Evolutionary strata on the X chromosomes of the dioecious plant Silene latifolia: evidence from new sex-linked genes. Genetics 175:1945–1954

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bidau CJ, Martí DA (2001) Meiosis and the Neo-XY of Dichroplus vittatus (Melanoplinae, Acrididae): a comparison between sexes. Genetica 110:185–194

    Article  Google Scholar 

  • Bidau CJ, Martí DA, Castillo ER (2011) Inexorable spread: inexorable death? The fate of neo-XY chromosomes of grasshoppers. J Genet 90:397–400

    Article  PubMed  Google Scholar 

  • Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC (2013) Chromosomal mapping of repetitive DNAs in Abracris flavolineata reveal possible ancestry for the B chromosome and surprisingly H3 histone spreading. PLoS One 8:e66532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bull JJ (1983) Evolution of sex determining mechanisms. Benjamin Cummings, Menlo Park

    Google Scholar 

  • Cabral-de-Mello DC, Moura RC, Martins C (2010) Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity 104:393–400

    Article  CAS  PubMed  Google Scholar 

  • Cabral-de-Mello DC, Valente GT, Nakajima RT, Martins C (2012) Genomic organization and comparative chromosome mapping of the U1 snRNA gene in cichlid fish, with an emphasis in Oreochromis niloticus. Chromosome Res 20:279–292

    Article  CAS  PubMed  Google Scholar 

  • Cabrero J, Teruel M, Carmona FD, Camacho JPM (2007) Histone H2AX phosphorylation is associated with most meiotic events in grasshopper. Cytogenet Genome Res 116:311–315

    Article  CAS  PubMed  Google Scholar 

  • Carbonell CS, Mesa A (2006) Ronderosia ommexechoides: a new species of Brazilian Dichroplini (Orthoptera: Acrididae, Melanoplinae). Neotrop Entomol 35:632–637

    Article  PubMed  Google Scholar 

  • Cardoso H, Dutra A (1979) The Neo-X Neo-Y sex pair in Acrididae, its structure and association. Chromosoma 70:323–336

    Article  Google Scholar 

  • Carvalho AB (2002) Origin and evolution of the Drosophila Y chromosome. Curr Opin Genet Dev 12:664–668

    Article  CAS  PubMed  Google Scholar 

  • Castillo ER, Martí DA, Bidau CJ (2010a) Sex and neo-sex chromosomes in Orthoptera: a review. J Orthopt Res 19:213–231

    Article  Google Scholar 

  • Castillo ERD, Bidau CJ, Martí DA (2010b) Neo-sex chromosome diversity in neotropical melanopline grasshoppers (Melanoplinae, Acrididae). Genetica 138:775–786

    Article  PubMed  Google Scholar 

  • Castillo ERD, Tafarel A, Martí DA (2014) The early evolutionary history of neo-sex chromosomes in Neotropical grasshoppers, Boliviacris noroestensis (Orthoptera: Acrididae: Melanoplinae). Eur J Entomol 111:321–327

    Article  Google Scholar 

  • Charlesworth D, Mank JE (2010) The birds and the bees and the flowers and the trees: lessons from genetic mapping of sex determination in plants and animals. Genetics 186:9–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Charlesworth B, Sniegowski P, Stephan W (1994) The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–220

    Article  CAS  PubMed  Google Scholar 

  • Charlesworth D, Charlesworth B, Marais G (2005) Steps in the evolution of heteromorphic sex chromosomes. Heredity 95:118–128

    Article  CAS  PubMed  Google Scholar 

  • Chintauan-Marquier IC, Jordan S, Berthier P, Amédégnato C, Pompanon F (2011) Evolutionary history and taxonomy of a short-horned grasshopper subfamily: The Melanoplinae (Orthoptera: Acrididae). Mol Phyl Evol 58:22–32

    Article  Google Scholar 

  • Cigliano MM (1997) Ronderosia, a new genus of South American Melanoplinae (Orthoptera: Acrididae). J Orthoptera Res 6:1–19

    Article  Google Scholar 

  • Cobb J, Cargile B, Handel MA (1999a) Acquisition of competence to condense metaphase I chromosomes during spermatogenesis. Dev Biol 205:49–64

    Article  CAS  PubMed  Google Scholar 

  • Cobb J, Miyaike M, Kikuchi A, Handel MA (1999b) Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase IIα localization and chromosome condensation. Chromosoma 108:412–425

    Article  CAS  PubMed  Google Scholar 

  • Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR (1998) Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Austral J Zool 46:419–437

    Article  Google Scholar 

  • Díaz MO, Sáez FA (1968) DNA synthesis in the neo-X neo-Y sex determination system of Dichroplus bergi (Orthoptera: Acrididae). Chromosoma 24:10–16

    Article  PubMed  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R et al. (2009) Geneious v4.8.5, Available from. http://www.geneious.com

  • Filatov DA, Moneger F, Negrutiu I, Charlesworth D (2000) Low variability in a Y linked plant gene and its implications for Y-chromosome evolution. Nature 404:388–390

    Article  CAS  PubMed  Google Scholar 

  • Fuchs J, Schubert I (2012) Chromosomal distribution and functional interpretation of epigenetic histone marks in plants. In: Bass HW, Birchler JA (ed.). Plant cytogenetics, plant genetics and genomics: crops and models 4. Springer Science+Business Media, LLC, pp 231–253

  • Hewitt GM (1979) Grasshoppers and crickets. Animal Cytogenetics. vol 3: Insecta 1. Orthoptera. Gebrüder Borntraeger, Berlin

  • Hobza R, Kejnovsky E, Vyskot B, Widmer A (2007) The role of chromosome rearrangements in the evolution of Silene latifolia sex chromosomes. Mol Genet Genomics 278:633–638

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Gernand D, Meister A, Leach CR, Schubert I (2003) Methylation of histone H3 in euchromatin of plant chromosomes depends on basic nuclear DNA content. Plant J 33:967–973

    Article  CAS  PubMed  Google Scholar 

  • Houben A, Demidov D, Karimi-Ashtiyani R (2013) Epigenetic control of cell division. Springer, Berlin

    Book  Google Scholar 

  • Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19:4780

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kaiser VB, Bachtrog D (2010) Evolutions of sex chromosome in insects. Annu Rev Genet 44:91–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kejnovsky E, Hobza R, Cermak T, Kubat Z, Vyskot B (2009) The role of repetitive DNA in structure and evolution of sex chromosomes in plants. Heredity 102:533–541

    Article  CAS  PubMed  Google Scholar 

  • Kejnovský E, Michalovova M, Steflova P, Kejnovska I, Manzano S, Hobza R, Kubat Z, Kovarik J, Jamilena M, Vyskot B (2013) Expansion of microsatellites on evolutionary young Y chromosome. PLoS One 8:e45519

    Article  PubMed Central  PubMed  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  • Kubat Z, Hobza R, Vyskot B, Kejnovsky E (2008) Microsatellite accumulation on the Y chromosome in Silene latifolia. Genome 51:350–356

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: A software a comprehensive analysis of DNA polymorphism data. Biogeosciences 25:1451–1452

    CAS  Google Scholar 

  • Manzanero S, Arana P, Puertas MJ, Houben A (2000) The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma 109:308–317

    Article  CAS  PubMed  Google Scholar 

  • Manzanero S, Rutten T, Kotseruba V, Houben A (2002) Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomes in response to cold treatment and the protein phosphatase inhibitor cantharidin. Chromosome Res 10:467–476

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Knopp T, Sarre SD, Georges A, Ezaz T (2013) Karyotypic analysis and FISH mapping of microsatellite motifs reveal highly differentiated XX/XY sex chromosomes in the pink-tailed worm-lizard (Aprasia parapulchella, Pygopodidae, Squamata). Mol Cytogenet 6:60

    Article  PubMed Central  PubMed  Google Scholar 

  • Matsunaga S (2009) Junk DNA promotes sex chromosome evolution. Heredity 102:525–526

    Article  CAS  PubMed  Google Scholar 

  • Mesa A, de Mesa RS (1967) Complex sex-determining mechanisms in thre species of South American grasshoppers (Orthoptera, Acridoidea). Chromosoma 21:163–180

    Article  Google Scholar 

  • Navajas-Pérez R, de la Herrán R, Jamilena M, Lozano R, Ruiz Rejón C, Ruiz Rejón M, Garrido-Ramos MA (2005) Reduced rates of sequence evolution of Y-linked satellite DNA in Rumex (Polygonaceae). J Mol Evol 60:391–399

    Article  PubMed  Google Scholar 

  • Navajas-Pérez R, Quesada del Bosque ME, Garrido-Ramos MA (2009) Effect of location, organization, and repeat-copy number in satellite-DNA evolution. Mol Genet Genomics 282:395–406

    Article  PubMed  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nicolas M, Marais G, Hykelova V, Janousek B, Laporte V, Byskot V, Mouchiroud D, Negrutiu I, Charlesworth D, Monéger F (2005) A gradual process of recombination restriction in the evolutionary history of the sex chromosomes in dioecious plants. PLoS Biol 3:e4

    Article  PubMed Central  PubMed  Google Scholar 

  • Ohno S (1967) Sex chromosomes and sex linked genes. Springer, Berlin

    Book  Google Scholar 

  • Oliver C, Pradillo M, Corredor E, Cuñado N (2013) The dynamics of histone H3 modifications is species-specific in plant meiosis. Planta 238:23–33

    Article  CAS  PubMed  Google Scholar 

  • Page J, de la Fuente R, Manterola M, Parra MT, Viera A, Berríos S, Fernández-Donoso R, Rufas JS (2012) Inactivation or non-reactivation: what accounts better for the silence of sex chromosomes during mammalian male meiosis? Chromosoma 121:307–326

    Article  CAS  PubMed  Google Scholar 

  • Palacios-Gimenez OM, Castillo ER, Martí DA, Cabral-de-Mello DC (2013) Tracking the evolution of sex chromosome systems in Melanoplinae grasshoppers through chromosomal mapping of repetitive DNA sequences. BMC Evol Biol 13:167

    Article  PubMed Central  PubMed  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc Natl Acad Sci U S A 83:2934–2938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pokorná M, Giovannotti M, Kratochvíl L, Kasai F, Trifonov VA, O’Brien PCM, Caputo C, Olmo E, Ferguson-Smith MA, Rens W (2011a) Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma 120:455–468

    Article  PubMed  Google Scholar 

  • Pokorná M, Kratochvíl L, Kejnovský E (2011b) Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox). BMC Genet 12:90

    Article  PubMed Central  PubMed  Google Scholar 

  • Rice WR (1996) Evolution of the Y sex chromosome in animals. Bioscience 46:331–343

    Article  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning. A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423:825–837

    Article  CAS  PubMed  Google Scholar 

  • Sotero-Caio CG, de Souza MJ, Cabral-de-Mello DC, Brasileiro-Vidal AC, Guerra M (2011) Phosphorylation of histone H3S10 in animal chromosomes: is there a uniform pattern? Cytogenet Genome Res 135:111–117

    Article  CAS  PubMed  Google Scholar 

  • Steinemann M, Steinemann S (1997) The enigma of Y chromosome degeneration: TRAM, a novel retrotransposon is preferentially located on the neo-Y chromosome of Drosophila miranda. Genetics 145:261–266

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steinemann S, Steinemann M (2005) Retroelements: tools for sex chromosome evolution. Cytogenet Genome Res 110:134–143

    Article  CAS  PubMed  Google Scholar 

  • Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Stecher G, Nei M, Kumar S (2011) Molecular evolutionary genetics using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Traut W, Sahara K, Marec F (2007) Sex chromosomes and sex determination in Lepidoptera. Sex Dev 1:332–346

    Article  CAS  PubMed  Google Scholar 

  • Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384

    Article  CAS  PubMed  Google Scholar 

  • Turner JMA, Shantha K, Mahadevaiah RB, Offenberg HH, Heyting C, Burgoyne PS (2000) Analysis of male meiotic “sex-body” proteins during XY female meiosis provides new insights into their functions. Chromosoma 109:426–432

    Article  CAS  PubMed  Google Scholar 

  • Vítková M, Fukova I, Kubíčková S, Marec F (2007) Molecular divergence of the W chromosomes in pyralid moths (Lepidoptera). Chromosome Res 15:917–930

    Article  PubMed  Google Scholar 

  • Webb GC, White MJD, Contreras N, Cheney J (1978) Cytogenetics of the parthogenetic grasshopper Warramaba (formely Moraba) virgo and its bisexual relatives. IV. Chromosome banding studies. Chromosoma 67:309–339

    Article  Google Scholar 

  • White MJD (1973) Animal cytology and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Yoshido A, Šíchová J, Kubíčková S, Marec F, Sahara K (2013) Rapid turnover of the W chromosome in geographical populations of wild silkmoths, Samia cynthia ssp. Chromosome Res 21:149–164

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Ellison CE, Kaiser VB, Alekseyenko AA, Gorchakov AA, Bachtrog D (2013) The epigenome of evolving Drosophila neo-sex chromosomes: dosage compensation and heterochromatin formation. PLoS Biol 11:e1001711

    Article  PubMed Central  PubMed  Google Scholar 

  • Zwick MS, Hanson RE, McKnight TD, Nurul-Islam-Faridi M, Stelly DM (1997) A rapid procedure for the isolation of C 0 t–1 DNA from plants. Genome 40:138–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Frantisek Marec for critical reading of the manuscript and to the anonymous reviewers for their substantial contributions, and to “Parque Estadual Edmundo Navarro de Andrade” administration for sample collecting authorization. OMPG acknowledges scholarship obtained from Fundação de Amparo a Pesquisa do Estado de São Paulo-FAPESP (process number 2012/01421-7). This study was partly supported by FAPESP (process number 2014/11763-8), Coordenadoria de Aperfeiçoamento de Pessoal de Nível Superior-CAPES, Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, and the Programa Primeiros Projetos-PROPE/UNESP from Brazil. DAM was supported by Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET from Argentina. The authors are grateful to Antonio Sergio Pascon for technical assistance in obtaining embryos.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. Cabral-de-Mello.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

FISH analysis for the C 0 t-1 and C 0 t-100 DNA fractions and three multigene families in the male mitotic metaphase complements of Ronderosia bergi. Each probe that was used and the neo-XY sex chromosome are indicated directly on the images. Note the absence of signals for multigene families in the sex chromosomes and the propagation of highly and moderately repetitive DNA sequences throughout the long arm of neo-Y chromosome; however, no differences in the distribution of the hybridization signals were observed with the distinct probes. Bar = 5 μm. (GIF 466 kb)

High resolution image (TIFF 6925 kb)

Supplementary material 2

FISH of the microsatellite probes in the male mitotic metaphase complements of Ronderosia bergi. Each probe that was used is indicated directly on the images. Note the specific and dispersed signals of the microsatellite arrays. The sex chromosomes are indicated. Bar = 5 μm. (GIF 509 kb)

High resolution image (TIFF 4247 kb)

Supplementary material 3

Alignment of the multigene family sequences that were isolated from the autosomes and sex chromosomes of Ronderosia bergi and Drosophila virilis. (GIF 169 kb)

High resolution image (TIFF 2404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacios-Gimenez, O.M., Marti, D.A. & Cabral-de-Mello, D.C. Neo-sex chromosomes of Ronderosia bergi: insight into the evolution of sex chromosomes in grasshoppers. Chromosoma 124, 353–365 (2015). https://doi.org/10.1007/s00412-015-0505-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-015-0505-1

Keywords

Navigation