Skip to main content

Advertisement

Log in

TFIIB and the regulation of transcription by RNA polymerase II

  • Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Accurate transcription of a gene by RNA polymerase II requires the assembly of a group of general transcription factors at the promoter. The general transcription factor TFIIB plays a central role in preinitiation complex assembly, providing a bridge between promoter-bound TFIID and RNA polymerase II. TFIIB makes extensive contact with the core promoter via two independent DNA-recognition modules. In addition to interacting with other general transcription factors, TFIIB directly modulates the catalytic center of RNA polymerase II in the transcription complex. Moreover, TFIIB has been proposed as a target of transcriptional activator proteins that act to stimulate preinitiation complex assembly. In this review, we will discuss our current understanding of these activities of TFIIB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agostini I, Navarro JM, Bouhamdan M, Willettes K, Rey F, Spire B, Vigne R, Pomerantz R, Sire J (1999) The HIV-1 Vpr co-activator induces a conformational change in TFIIB. FEBS Lett 450:235–239

    Article  PubMed  CAS  Google Scholar 

  • Andel F, Ladurner AG, Inouye C, Tjian R, Nogales E (1999) Three-dimensional structure of the human TFIID–IIA–IIB complex. Science 286:2153–2156

    Article  PubMed  CAS  Google Scholar 

  • Apone LM, Virbasius CM, Reese JC, Green MR (1996) Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev 10:2368–2380

    Article  PubMed  CAS  Google Scholar 

  • Bagby S, Kim S, Maldonado E, Tong KI, Reinberg D, Ikura M (1995) Solution structure of the C-terminal core domain of human TFIIB: similarity to cyclin A and interaction with TATA-binding protein. Cell 82:857–867

    Article  PubMed  CAS  Google Scholar 

  • Baldwin DA, Gurley WB (1996) Isolation and characterization of cDNAs encoding transcription factor IIB from Arabidopsis and soybean. Plant J 10:569–578

    Article  Google Scholar 

  • Bangur CS, Pardee TS, Ponticelli AS (1997) Mutational analysis of the D1/E1 core helices and the conserved N-terminal region of yeast transcription factor IIB (TFIIB): identification of an N-terminal mutant that stabilizes TATA-binding protein–TFIIB DNA complexes. Mol Cell Biol 17:6784–6793

    PubMed  CAS  Google Scholar 

  • Bangur CS, Faitar SL, Folster JP, Ponticelli AS (1999) An interaction between the N terminal region and the core domain of yeast TFIIB promotes the formation of TATA-binding protein–TFIIB–DNA complexes. J Biol Chem 274:23203–23209

    Article  PubMed  CAS  Google Scholar 

  • Baniahmad A, Ha I, Reinberg D, Tsai S, Tsai MJ, O’Malley BW (1993) Interaction of human thyroid hormone receptor beta with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone. Proc Natl Acad Sci U S A 90:8832–8836

    Article  PubMed  CAS  Google Scholar 

  • Barberis A, Muller CW, Harrison, SC, Ptashne M (1993) Delineation of an N-terminal region of transcription factors TFIIB. Proc Natl Acad Sci 90:5628–5632

    Article  PubMed  CAS  Google Scholar 

  • Bartlett MS (2005) Determinants of transcription initiation by archaeal RNA polymerase. Curr Opin Microbiol 8:677–684

    Article  PubMed  CAS  Google Scholar 

  • Bell SD, Jackson SP (2000) The role of transcription factor B in transcription initiation and promoter clearance in the archaeon Sulfolobus acidocaldarius. J Biol Chem 275:12934–12940

    Article  PubMed  CAS  Google Scholar 

  • Bell SD, Kosa PL, Sigler PB, Jackson SP (1999) Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci U S A 96:13662–13667

    Article  PubMed  CAS  Google Scholar 

  • Benson JD, Lawande R, Howley PM (1997) Conserved interaction of the papillomavirus E2 transcriptional activator proteins with human and yeast TFIIB proteins. J Virol 71:8041–8047

    PubMed  CAS  Google Scholar 

  • Blair WS, Bogerd HP, Madore SJ, Cullen BR (1994) Mutational analysis of the transcription activation domain of RelA: identification of a highly synergistic minimal acidic activation module. Mol Cell Biol 14:7226–7234

    PubMed  CAS  Google Scholar 

  • Buratowski S, Zhou H (1993) Functional domains of transcription factor TFIIB. Proc Natl Acad Sci 90:5633–5637

    Article  PubMed  CAS  Google Scholar 

  • Buratowski S, Hahn S, Guarente, L, Sharp PA (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561

    Article  PubMed  CAS  Google Scholar 

  • Buratowski RM, Downs J, Buratowski S (2002) Interdependent interactions between TFIIB, TATA binding protein, and DNA. Mol Cell Biol 22:8735–8743

    Article  PubMed  CAS  Google Scholar 

  • Bushnell DA, Westover KD, Davis RE, Kornberg RD (2004) Structure basis of transcription: an RNA polymerase II–TFIIB cocrystal at 4.5 angstroms. Science 303:983–988

    Article  PubMed  CAS  Google Scholar 

  • Butler JEF, Kadonaga JT (2002) The RNA polymerase II core promoter: a key component in the regulation of gene expression. Gene Dev 16:2583–2592

    Article  PubMed  CAS  Google Scholar 

  • Caswell R, Hagemeier C, Chiou CJ, Hayward G, Kouzarides T, Sinclair J (1993) The human cytomegalovirus 86K immediate early (IE) 2 protein requires the basic region of the TATA-box binding protein (TBP) for binding, and interacts with TBP and transcription factor TFIIB via regions of IE2 required for transcriptional regulation. J Gen Virol 74:2691–2698

    Article  PubMed  CAS  Google Scholar 

  • Chen HT, Hahn S (2003) Binding of TFIIB to RNA polymerase II: mapping the binding site for the TFIIB zinc ribbon domain within the preinitiation complex. Mol Cell 12:437–447

    Article  PubMed  CAS  Google Scholar 

  • Chen HT, Hahn S (2004) Mapping the location of TFIIB within the RNA polymerase II transcription preinitiation complex: a model for the structure of the PIC. Cell 119:169–180

    Article  PubMed  CAS  Google Scholar 

  • Chen BS, Hampsey M (2004) Functional interaction between TFIIB and the RBP2 subunit of RNA polymerae II: Implications for the mechanism of transcription initiation. Mol Cell Biol 24:3983–3991

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Manley JL (2003) Core promoter elements and TAFs contribute to the diversity of transcriptional activation in vertebrates. Mol Cell Biol 23:7350–7362

    Article  PubMed  CAS  Google Scholar 

  • Chen HT, Legault P, Glushka J, Omichinski JG, Scott RA (2000) Structure of a (Cys3His) zinc ribbon, a ubiquitous motif in archaeal and eucaryal transcription. Protein Sci 9:1743–1752

    PubMed  CAS  Google Scholar 

  • Chiang YC, Komarnitsky P, Chase D, Denis CL (1996) ADR1 activation domains contact the histone acetyltransferase GCN5 and the core transcriptional factor TFIIB. J Biol Chem 271:32359–33265

    Article  PubMed  CAS  Google Scholar 

  • Cho EJ, Buratoski (1999) Evidence that transcription IIB is required for post assembly step in transcription initiation. J Biol Chem 274:25807–25813

    Article  PubMed  CAS  Google Scholar 

  • Chou S, Struhl K (1997) Transcriptional activation by TFIIB mutants that are severely impaired in interaction with promoter DNA and acidic activation domains. Mol Cell Biol 17:6794–6802

    PubMed  CAS  Google Scholar 

  • Choy B, Green MR (1993) Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature 366:531–536

    Article  PubMed  CAS  Google Scholar 

  • Colgan J, Wampler S, Manley JL (1993) Interaction between a transcriptional activator and transcription factor IIB in vivo. Nature 362:549–553

    Article  PubMed  CAS  Google Scholar 

  • Colgan J, Ashali H, Manley JL (1995) A direct interaction between a glutamine-rich activator and the N terminus of TFIIB can mediate transcriptional activation in vivo. Mol Cell Biol 15:2311–2320

    PubMed  CAS  Google Scholar 

  • Coulombe B, Li J, Greenblatt J (1994) Topological localization of the human transcription factors IIA, IIB, TATA box-binding protein and RNA polymeraseII-associated protein 30 on a class II promoter. J Biol Chem 269:19962–19967

    PubMed  CAS  Google Scholar 

  • Creti R, Londei P, Cammarano P (1993) Complete nucleotide sequence of an archaeal (Pyrococcus woesei) gene encoding a homolog of eukaryotic transcription factor IIB. Nucleic Acids Res 21:2942–2949

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Roberts SGE (2005) A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes Dev 19:2418–2423

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Roberts SGE (2006) Core promoter elements recognized by transcription factor IIB. Biochem Soc Trans 34:1051–1053

    Article  PubMed  CAS  Google Scholar 

  • Elsby LM, Roberts SGE (2004) The role of TFIIB conformation in transcriptional regulation. Biochem Soc Trans 32:1098–1099

    Article  PubMed  CAS  Google Scholar 

  • Elsby LM, O’Donnell AJM, Green LM, Sharrocks AD, Roberts SGE (2006) Assembly of TFIIB at a promoter in vivo requires contact with RNA polymerase II. EMBO Rep 7:898–903

    Article  PubMed  CAS  Google Scholar 

  • Evans R, Failey JA, Roberts SGE (2001) Activator-mediated disruption of sequence-specific DNA contacts by the general transcription factor TFIIB. Genes Dev 15:2945–2949

    Article  PubMed  CAS  Google Scholar 

  • Fairley JA, Evans R, Hawkes NA, Roberts SG (2002) Core promoter-dependent TFIIB conformation and a role for TFIIB conformation in transcription start site selection. Mol Cell Biol 22:6697–6705

    Article  PubMed  CAS  Google Scholar 

  • Faitar SL, Brodie SA, Ponticelli AS (2001) Promoter-specific shifts in transcription initiation conferred by yeast TFIIB mutations are determined by the sequence in the immediate vicinity of the start sites. Mol Cell Biol 21:4427–4440

    Article  PubMed  CAS  Google Scholar 

  • Fang SM, Burton ZF (1996) RNA polymerase II-associated protein (RAP) 74 binds transcription factor (TF) IIB and blocks TFIIB-RAP30 binding. J Biol Chem 27:11703–11709

    Google Scholar 

  • Franklin CC, McCulloch AV, Kraft AS (1995) In vitro association between the Jun protein family and the general transcription factors, TBP and TFIIB. Biochem J 305:967–974

    PubMed  CAS  Google Scholar 

  • Freire-Picos MA, Krishnamurthy S, Sun Z-W, Hampsey M (2005) Evidence that the Tfg1/Tfg2 dimer interface of TFIIF lies near the active center of the RNA polymerase II initiation complex. Nucleic Acid Res 33:5045–5052

    Article  PubMed  CAS  Google Scholar 

  • Ge H, Roeder RG (1994) Purification, cloning, and characterization of a human coactivator, PC4, that mediates transcriptional activation of class II genes. Cell 78:513–523

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon NI, Ioshikhes IP (2005a) Synergy of human Pol II core promoter elements revealed by statistical sequence analysis. Bioinformatics 21:1295–1300

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon NI, Ioshikhes IP (2005b) Promoter classifier: software package for promoter database analysis. Appl Bioinformatics 4:205–209

    PubMed  CAS  Google Scholar 

  • Ghosh M, Elsby LM, Mal TK, Gooding JM, Roberts SGE, Ikura M (2004) Probing zinc-binding effects on the zinc ribbon domain of human general transcription factor TFIIB. Biochem J 378:317–324

    Article  PubMed  CAS  Google Scholar 

  • Gibson TJ, Thompson JD, Blocker A, Kouzarides T (1994) Evidence for a protein domain superfamily shared by the cyclins, TFIIB and RB/p107. Nucleic Acids Res 22:946–952

    Article  PubMed  CAS  Google Scholar 

  • Glossop JA, Dafforn TR, Roberts SGE (2004) A conformational change in TFIIB is required for activator-mediated assembly of the preinitiation complex. Nucleic Acids Res 32:1829–1835

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Couto E, Klages N, Strubin M (1997) Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc Natl Acad Sci U S A 94:8036–8041

    Article  PubMed  CAS  Google Scholar 

  • Goodrich JA, Hoey T, Thut CJ, Admon A, Tjian R (1993) Drosophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75:519–530

    Article  PubMed  CAS  Google Scholar 

  • Grossmann JG, Sharff AJ, O’Hare P, Luisi B (2001) Molecular shapes of transcription factors TFIIB and VP16 in solution: implications for recognition. Biochemistry 40:6267–6274

    Article  PubMed  CAS  Google Scholar 

  • Gu B, Kuddus R, DeLuca NA (1995) Repression of activator-mediated transcription by herpes simplex virus ICP4 via a mechanism involving interactions with the basal transcription factors TATA-binding protein and TFIIB. Mol Cell Biol 15:3618–3626

    PubMed  CAS  Google Scholar 

  • Ha I, Lane WS, Reinberg D (1991) Cloning of a human gene encoding the general transcription initiation factor IIB. Nature 352:689–695

    Article  PubMed  CAS  Google Scholar 

  • Ha I, Roberts, S, Maldonado E, Sun X, Kim LV, Green M, Reinberg D (1993) Multiple function domain of human transcription factor IIB: distinct interactions with two general transcription factors and RNA polymerase II. Genes Dev 7:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Hall DB, Struhl K (2002) The VP16 activation domain interacts with multiple transcriptional components as determined by protein–protein cross-linking in vivo. J Biol Chem 277:46043–46050

    Article  PubMed  CAS  Google Scholar 

  • Hawkes NA, Roberts SG (1999) The role of human TFIIB in transcription start site selection in vitro and in vivo. J Biol Chem 274:14337–14343

    Article  PubMed  CAS  Google Scholar 

  • Hawkes NA, Evans R, Roberts SGE (2000) The conformation of the transcription factor TFIIB modulates the response to transcriptional activators in vivo. Curr Biol 10:273–276

    Article  PubMed  CAS  Google Scholar 

  • Hayashi F, Ishima R, Liu D, Tong KI, Kim S, Reinberg D, Bagby S, Ikura M (1998) Human general transcription factor TFIIB: conformational variability and interaction with VP16 activation domain. Biochemistry 37:7941–7951

    Article  PubMed  CAS  Google Scholar 

  • He X, Khan AU, Cheng H, Pappas DL Jr, Hampsey M, Moore CL (2003) Functional interactions between the transcription and mRNA 3′ end processing machineries mediated by Ssu72 and Sub1. Genes Dev 17:1030–1042

    Article  PubMed  CAS  Google Scholar 

  • Hellqyist M, Mahlapuu M, Blixt A, Enerback S, Carlsson P (1998) The human forkhead protein FREAC-2 contains two functionally redundant activation domains and interacts with TBP and TFIIB. J Biol Chem 273(36):23335–23343

    Article  Google Scholar 

  • Hisatake K, Malik S, Roeder RG, Horikoshi M (1991) Conserved structural motifs between Xenopus and human TFIIB. Nucleic Acids Res 19:6639–6646

    Article  PubMed  CAS  Google Scholar 

  • Hori R, Pyo S, Carey M (1995) Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators. Proc Natl Acad Sci U S A 92:6047–6051

    Article  PubMed  CAS  Google Scholar 

  • Juven-Gershon T, Hsu J-Y, Kadonaga JT (2006) Perspectives on the RNA polymerase II core promoter. Biochem Soc Trans 34:1047–1049

    Article  PubMed  CAS  Google Scholar 

  • Kim TK, Roeder RG (1994) Proline-rich activator CTF1 targets the TFIIB assembly step during transcriptional activation. Proc Natl Acad Sci U S A 91:4170–4174

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Tao Y, Roeder RG, Cook PR (1999) Quantitation of RNA polymerase II and its transcription factors in an HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol Cell Biol 19:5383–5392

    PubMed  CAS  Google Scholar 

  • Knaus R, Pollock R, Guarente L (1996) Yeast SUB1 is a suppressor of TFIIB mutations and has homology to the human co-activator PC4. EMBO J 15:1933–1940

    PubMed  CAS  Google Scholar 

  • Kobor MS, Simon LD, Omichinski J, Zhong G, Archambault J, Greenblatt J (2000) A motif shared by TFIIF and TFIIB mediates their interaction with the RNA polymerase II carboxy-terminal domain phosphatase Fcp1p in Saccharomyces cerevisiae. Mol Cell Biol 20:7438–7449

    Article  PubMed  CAS  Google Scholar 

  • Koleske AJ, Young RA (1994) An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar M, Kaiser K, Lottspeich F, Meisterernst M (1994) A novel mediator of class II gene transcription with homology to viral immediate–early transcriptional regulators. Cell 78:525–534

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy S, He X, Reyes-Reyes M, Moore C, Hampsey M (2004) Ssu72 is an RNA polymerase II CTD phosphatase. Mol Cell 14:387–394

    Article  PubMed  CAS  Google Scholar 

  • Kuehner JN, Brow DA (2006) Quantitative analysis of in vivo initiator selection by yeast RNA polymerase II supports a scanning model. J Biol Chem 281:14119–14128

    Article  PubMed  CAS  Google Scholar 

  • Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226

    Article  PubMed  CAS  Google Scholar 

  • Lagrange T, Kim TK, Orphanides G, Ebright YW, Ebright RH, Reinberg D (1996) High-resolution mapping of nucleoprotein complexes by site-specific protein–DNA photocrosslinking: Organization of the human TBP–TFIIA–DNA quanternary complex. Proc Natl Acad Sci U S A 93:10620–10625

    Article  PubMed  CAS  Google Scholar 

  • Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH (1998) New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 12:34–44

    PubMed  CAS  Google Scholar 

  • Lee S, Hahn S (1995) Model for binding of transcription factor TFIIB to the TBP–DNA complex. Nature 376:609–612

    Article  PubMed  CAS  Google Scholar 

  • Leurent C, Sanders S, Ruhlmann C, Mallouh V, Weil PA, Kirschner DB, Tora L, Schultz P (2002) Mapping histone fold TAFs within yeast TFIID. EMBO J 21:3424–3433

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Flanagan PM, Tschochner H, Kornberg RD (1994) RNA polymerase II initiation factor interactions and transcription start site selection. Science 263:805–807

    Article  PubMed  CAS  Google Scholar 

  • Li LA, Chiang EF, Chen JC, Hsu NC, Chen YJ, Chung BC (1999) Function of steroidogenic factor 1 domains in nuclear localization, transactivation, and interaction with transcription factor TFIIB and c-Jun. Mol Endocrinol 13:1588–1598

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Green MR (1991) Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Ha I, Maldonado E, Reinberg D, Green MR (1991) Binding of general transcription factor TFIIB to an acidic activating region. Nature 353:569–571

    Article  PubMed  CAS  Google Scholar 

  • Littllefield O, Korkhin Y, Sigler PB (1999) The structural basis for the oriented assembly of a TBP/TFB/promoter complex. Proc Natl Acad Sci U S A 96:13668–13673

    Article  Google Scholar 

  • Liu X, Berk AJ (1995) Reversal of in vitro p53 squelching by both TFIIB and TFIID. Mol Cell Biol 15:6474–6478

    PubMed  CAS  Google Scholar 

  • Malik S, Hisatake K, Sumimoto H, Horikoshi M, Roeder RG (1991) Sequence of general transcription factor TFIIB and relationships to other initiation factors. Proc Natl Acad Sci U S A 88:9553–9557

    Article  PubMed  CAS  Google Scholar 

  • Malik S, Lee DK, Roeder RG (1993) Potential RNA polymerase II-induced interactions of transcription factor TFIIB. Mol Cell Biol 13:6253–6259

    PubMed  CAS  Google Scholar 

  • Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–670

    Article  PubMed  CAS  Google Scholar 

  • Masuyama H, Jefcoat SC Jr, MacDonald PN (1997) The N-terminal domain of transcription factor IIB is required for direct interaction with the vitamin D receptor and participates in vitamin D-mediated transcription. Mol Endocrinol 11:218–228

    Article  PubMed  CAS  Google Scholar 

  • McKay LM, Carpenter B, Roberts SGE (1999) Regulation of the Wilms’ tumour suppressor protein transcriptional activation domain. Oncogene 18:6546–6554

    Article  PubMed  CAS  Google Scholar 

  • Nevado J, Gaudreau L, Adam M, Ptashne M (1999) Transcriptional activation by artificial recruitment in mammalian cells. Proc Natl Acad Sci U S A 96:2674–2677

    Article  PubMed  CAS  Google Scholar 

  • Nguyen BD, Chen HT, Kobor MS, Greenblatt J, Legault P, Omichinski JG (2003) Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB. Biochemistry 42:1460–1469

    Article  PubMed  CAS  Google Scholar 

  • Nikolov DB, Chen H, Halay ED, Usheva AA, Hisatake K, Lee DK, Roeder RG, Burley SK (1995) Crystal structure of a TFIIB–TBP–TATA–element ternary complex. Nature 377:119–128

    Article  PubMed  CAS  Google Scholar 

  • Ossipow V, Tassan JP, Nigg EA, Schibler U (1995) A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146

    Article  PubMed  CAS  Google Scholar 

  • Pal M, Ponticelli AS, Luse DS (2005) The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol Cell 19:101–110

    Article  PubMed  CAS  Google Scholar 

  • Palenchar JB, Liu W, Palenchar PM, Bellofatto V (2006) A divergent transcription factor TFIIB in trypanosomes is required for RNA polymerase II-dependent spliced leader RNA transcription and cell viability. Eukaryot Cell 5:293–300

    Article  PubMed  CAS  Google Scholar 

  • Pan S, Sehnke PC, Ferl RJ, Gurley WB (1999) Specific interactions with TBP and TFIIB in vitro suggest that 14–3–3 proteins may participate in the regulation of transcription when part of a DNA binding complex. Plant Cell 11:1591–1602

    Article  PubMed  CAS  Google Scholar 

  • Pappas DL, Hampsey M (2000) Functional interaction between Ssu72 and the Rpb2 subunit of RNA polymerase II in Saccharomyces cerevisiae. Mol Cell Biol 20:8343–8351

    Article  PubMed  CAS  Google Scholar 

  • Pardee TS, Bangur CS, Ponticelli AS (1998) The N-terminal region of yeast TFIIB contains two adjacent functional domains involved in stable RNA polymerase II binding and transcription start site selection. J Biol Chem 273:17859–17864

    Article  PubMed  CAS  Google Scholar 

  • Parvin JD, Sharp PA (1993) DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540

    Article  PubMed  CAS  Google Scholar 

  • Pinto I, Ware DE, Hampsey M (1992) The yeast SUA7 gene encodes a homolog of human transcription factor TFIIB and is required for normal start site selection in vivo. Cell 68:977–988

    Article  PubMed  CAS  Google Scholar 

  • Pinto I, Wu WH, Na JG, Hampsey M (1994) Characterisation of sua7 mutations defines a domain of TFIIB involved in transcription start site selection in yeast. J Biol Chem 269:30569–30573

    PubMed  CAS  Google Scholar 

  • Qureshi SA, Jackson SP (1998) Sequence-specific DNA binding by the S. Shibatae TFIIB homolog, TFB , and its effect on promoter strength. Mol Cell 1:389–400

    Article  PubMed  CAS  Google Scholar 

  • Qureshi SA, Khoo B, Baumann P, Jackson SP (1995) Molecular cloning of the transcription factor TFIIB homolog fromSulfolobus shibatae. Proc Natl Acad Sci U S A 92:6077–6081

    Article  PubMed  CAS  Google Scholar 

  • Ranish JA, Yudkovsky N, Hahn S (1999) Intermediates in formation and activity of the RNA polymerase preinitiation complex: Holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 13:49–63

    PubMed  CAS  Google Scholar 

  • Reinberg D, Roeder RG (1987) Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of initiation factors IIB and IIE. J Biol Chem 262:3310–3321

    PubMed  CAS  Google Scholar 

  • Renfrow MB, Naryshkin N, Lewis LM, Chen HT, Ebright RH, Scott RA (2004) Transcription factor B contacts promoter DNA near the transcription start site of the archaeal transcription initiation complex. J Biol Chem 279:2825–2831

    Article  PubMed  CAS  Google Scholar 

  • Roberts SGE, Green MR (1994) Activator-induced conformational change in general transcription factor TFIIB. Nature 371:717–720

    Article  PubMed  CAS  Google Scholar 

  • Roberts SGE, Ha I, Maldonado E, Reinberg D, Green MR (1993) Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363:741–744

    Article  PubMed  CAS  Google Scholar 

  • Roberts SGE, Choy B, Walker SS, Lin YS, Green MR (1995) A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr Biol 5:508–516

    Article  PubMed  CAS  Google Scholar 

  • Sauer F, Fondell JD, Ohkuma Y, Roeder RG, Jackle H. (1995) Control of transcription by Kruppel through interactions with TFIIB and TFIIE beta. Nature 375:162–164

    Article  PubMed  CAS  Google Scholar 

  • Sawadogo M, Roeder RG (1985) Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell 43:165–175

    Article  PubMed  CAS  Google Scholar 

  • Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu Rev Biochem 72:449–479

    Article  PubMed  CAS  Google Scholar 

  • Sun ZW, Hampsey M (1995) Identification of the gene (SSU7/TFG1) encoding the largest subunit of transcription factor TFIIF as a suppressor of a TFIIB mutation in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92:3127–3131

    Article  PubMed  CAS  Google Scholar 

  • Sun ZW, Hampsey M (1996) Synthetic enhancement of a TFIIB defect by a mutation in SSU72, an essential yeast gene encoding a novel protein that affects transcription start site selection in vivo. Mol Cell Biol 16:1557–1566

    PubMed  CAS  Google Scholar 

  • Sun ZW, Tessmer A, Hampsey M (1996) Functional interaction between TFIIB and the Rpb9 (Ssu73) subunit of RNA polymerase II in Saccharomyces cerevisiae. Nucleic Acids Res 24:2560–2566

    Article  PubMed  CAS  Google Scholar 

  • Thomas MC, Chiang CM (2006) The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41:105–178

    Article  PubMed  CAS  Google Scholar 

  • Thompson NE, Strasheim LA, Nolan KM, Burgess RR (1995) Accessibility of epitopes on human transcription factor IIB in the native protein and in a complex with DNA. J Biol Chem 270:4735–4740

    Article  PubMed  CAS  Google Scholar 

  • Tsai FT, Sigler PB (2000) Structural basis of preinitiation complex assembly on human Pol II promoters. EMBO J 19:25–36

    Article  PubMed  CAS  Google Scholar 

  • Tubon TC, Tansey WP, Herr W (2004) A nonconserved surface of the TFIIB zinc ribbon domain plays a direct role in RNA polymerase II recruitment. Mol Cell Biol 24:2863–2874

    Article  PubMed  CAS  Google Scholar 

  • Tyree CM, George CP, Lira-DeVito LM, Wampler SL, Dahmus ME, Zawel L, Kadonaga JT (1993) Identification of a minimal set of proteins that is sufficient for accurate initiation of transcription by RNA polymerase II. Genes Dev 7:1254–1265

    Article  PubMed  CAS  Google Scholar 

  • Usheva A, Shenk T (1994) TATA-binding protein-independent initiation: YY1, TFIIB, and RNA polymerase II direct basal transcription on supercoiled template DNA. Cell 76:1115–1121

    Article  PubMed  CAS  Google Scholar 

  • Wampler SL, Kadonaga JT (1992) Functional analysis of Drosophila transcription factor IIB. Genes Dev 6:1542–1552

    Article  PubMed  CAS  Google Scholar 

  • Werner F, Weinzierl ROJ (2005) Direct modulation of RNA polymerase core function by basal transcription factors. Mol Cell Biol 25:8344–8355

    Article  PubMed  CAS  Google Scholar 

  • Wu WH, Hampsey M (1999) An activation-specific role for transcription factor TFIIB in vivo. Proc Natl Acad Sci U S A 96:2764–2769

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Reece RJ, Ptashne M (1996) Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 15:3951–3963

    PubMed  CAS  Google Scholar 

  • Yamashita S, Wada K, Horikoshi M, Gong DW, Kokubo T, Hisatake K, Yokotani N, Malik S, Roeder RG, Nakatani Y (1992) Isolation and characterization of a cDNA encoding Drosophila transcription factor TFIIB. Proc Natl Acad Sci U S A 89:2839–2843

    Article  PubMed  CAS  Google Scholar 

  • Zawel L, Kumar KP, Reinberg D (1995) Recycling of the general transcription factors during RNA polymerase II transcription. Genes Dev 9:1479–1490

    Article  PubMed  CAS  Google Scholar 

  • Zhang DY, Dorsey MJ, Voth WP, Carson DJ, Zeng X, Stillman DJ, Ma J (2000) Intramolecular interaction of yeast TFIIB in transcription control. Nucleic Acids Res 28:1913–1920

    Article  PubMed  CAS  Google Scholar 

  • Zhang DY, Carson DJ, Ma J (2002) The role of TFIIB–RNA polymerase II interaction in start site selection in yeast cells. Nucleic Acids Res 30:3078–3085

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Hoeflich KP, Elsby LM, Ghosh M, Roberts SG, Ikura M (2004) FRET evidence for a conformational change in TFIIB upon TBP–DNA binding. Eur J Biochem 271:792–800

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Zeng Q, Colangelo, CM, Lewis M, Summers MF, Scott RA (1996) The N-terminal domain of TFIIB from Pyrococcus furiosus forms a zinc ribbon. Nat Struct Biol 3:122–124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We would like to thank Sarah Goodfellow and Yuming Wang for comments on the manuscript. We are grateful to the Wellcome Trust for supporting our work on TFIIB. SGER is a Wellcome Trust Senior Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan G. E. Roberts.

Additional information

Communicated by E. A. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, W., Roberts, S.G.E. TFIIB and the regulation of transcription by RNA polymerase II. Chromosoma 116, 417–429 (2007). https://doi.org/10.1007/s00412-007-0113-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-007-0113-9

Keywords

Navigation