Skip to main content
Log in

Nucleolin provides a link between RNA polymerase I transcription and pre-ribosome assembly

  • Original Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Despite the identification of numerous factors involved in ribosomal RNA synthesis and maturation, the molecular mechanisms of ribosome biogenesis, and in particular the relationship between the different steps, are still largely unknown. We have investigated the consequences of an increased amount of a major nucleolar non-ribosomal protein, nucleolin, in Xenopus laevis stage VI oocytes on the production of ribosomal subunits. We show that a threefold increase in nucleolin leads to the complete absence of pre-rRNA maturation in addition to significant repression of RNA polymerase I transcription. Observation of "Christmas trees" by electron microscopy and analysis of the sedimentation properties of 40S pre-ribosomal particles suggest that an increased amount of nucleolin leads to incorrect packaging of the 40S particle. Interestingly, nucleolin affects the maturation of the 40S particle only when it is present at the time of transcription. These results indicate that nucleolin participates in the co-transcriptional packaging of the pre-rRNA, and that the quality of this packaging will determine whether the 40S precursor undergoes maturation or is degraded. The interaction of nucleolin with nascent pre-rRNA could help the co-transcriptional assembly on pre-rRNA of factors necessary for the subsequent maturation of the pre-ribosomal particle containing the 40S pre-rRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–C.
Fig. 2A, B.
Fig. 3A, B.
Fig. 4A, B.
Fig. 5A, B.

Similar content being viewed by others

References

  • Abadia-Molina F, Torreblanca J, Garcia-Herdugo G, Moreno FJ (1998) Inhibition of nucleolar protein nucleolin by electroporation with anti-nucleolin antibodies results in an increase of the nucleolar size. Biol Cell 90:355–361

    Article  CAS  PubMed  Google Scholar 

  • Allain FH, Bouvet P, Dieckmann T, Feigon J (2000) Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J 19:6870–6881

    Article  CAS  PubMed  Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM, Nigg EA (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390

    CAS  PubMed  Google Scholar 

  • Bouche G, Caizergues-Ferrer M, Bugler B, Amalric F (1984) Interrelations between the maturation of a 100 kDa nucleolar protein and pre rRNA synthesis in CHO cells. Nucleic Acids Res 12:3025–3035

    CAS  PubMed  Google Scholar 

  • Bourbon HM, Bugler B, Caizergues-Ferrer M, Amalric F, Zalta JP (1983) Maturation of a 100 kDa protein associated with preribosomes in Chinese hamster ovary cells. Mol Biol Rep 9:39–47

    CAS  PubMed  Google Scholar 

  • Bouvet P, Diaz JJ, Kindbeiter K, Madjar JJ, Amalric F (1998) Nucleolin interacts with several ribosomal proteins through its RGG domain. J Biol Chem 273:19025–19029

    Article  CAS  PubMed  Google Scholar 

  • Bouvet P, Allain FH, Finger LD, Dieckmann T, Feigon J (2001) Recognition of pre-formed and flexible elements of an RNA stem-loop by nucleolin. J Mol Biol 309:763–775

    Article  CAS  PubMed  Google Scholar 

  • Bugler B, Caizergues-Ferrer M, Bouche G, Bourbon H, Amalric F (1982) Detection and localization of a class of proteins immunologically related to a 100-kDa nucleolar protein. Eur J Biochem 128:475–480

    CAS  PubMed  Google Scholar 

  • Caizergues-Ferrer M, Belenguer P, Lapeyre B, Amalric F, Wallace MO, Olson MO (1987) Phosphorylation of nucleolin by a nucleolar type NII protein kinase. Biochemistry 26:7876–7883

    CAS  PubMed  Google Scholar 

  • Chooi WY, Leiby KR (1981) An electron microscopic method for localization of ribosomal proteins during transcription of ribosomal DNA: a method for studying protein assembly. Proc Natl Acad Sci U S A 78:4823–4827

    Google Scholar 

  • Egyhazi E, Pigon A, Chang JH, Ghaffari SH, Dreesen TD, Wellman SE, Case ST, Olson MO (1988) Effects of anti-C23 (nucleolin) antibody on transcription of ribosomal DNA in Chironomus salivary gland cells. Exp Cell Res 178:264–272

    CAS  PubMed  Google Scholar 

  • Eichler DC, Craig N (1994) Processing of eukaryotic ribosomal RNA. Prog Nucleic Acid Res Mol Biol 49:197–239

    CAS  PubMed  Google Scholar 

  • Fath S, Milkereit P, Podtelejnikov AV, Bischler N, Schultz P, Bier M, Mann M, Tschochner H (2000) Association of yeast RNA polymerase I with a nucleolar substructure active in rRNA synthesis and processing. J Cell Biol 149:575–590

    CAS  PubMed  Google Scholar 

  • Ghisolfi-Nieto L, Joseph G, Puvion-Dutilleul F, Amalric F, Bouvet P (1996) Nucleolin is a sequence-specific RNA-binding protein: characterization of targets on pre-ribosomal RNA. J Mol Biol 260:34–53

    Article  CAS  PubMed  Google Scholar 

  • Ginisty H, Amalric F, Bouvet P (1998) Nucleolin functions in the first step of ribosomal RNA processing. EMBO J 17:1476–1486

    Article  CAS  PubMed  Google Scholar 

  • Ginisty H, Serin G, Ghisolfi-Nieto L, Roger B, Libante V, Amalric F, Bouvet P (2000) Interaction of nucleolin with an evolutionarily conserved pre-ribosomal RNA sequence is required for the assembly of the primary processing complex. J Biol Chem 275:18845-18850

    Article  CAS  PubMed  Google Scholar 

  • Ginisty H, Amalric F, Bouvet P (2001) Two different combinations of RNA-binding domains determine the RNA binding specificity of nucleolin. J Biol Chem 276:14338-14343

    CAS  PubMed  Google Scholar 

  • Hadjiolov AA (1985) The nucleolus and ribosome biogenesis. Springer-Verlag, Berlin Heidelberg New York

  • Hannan RD, Cavanaugh A, Hempel WM, Moss T, Rothblum L (1999) Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system. Nucleic Acids Res 27:3720–3727

    Article  CAS  PubMed  Google Scholar 

  • Hitchen J, Ivakine E, Melekhovets YF, Lalev A, Nazar RN (1997) Structural features in the 3′ external transcribed spacer affecting intragenic processing of yeast rRNA. J Mol Biol 274:481–490

    Article  CAS  PubMed  Google Scholar 

  • Intine RV, Good L, Nazar RN (1999) Essential structural features in the Schizosaccharomyces pombe pre-rRNA 5′ external transcribed spacer. J Mol Biol 286:695–708

    Article  CAS  PubMed  Google Scholar 

  • Jordan G (1987) At the heart of the nucleolus. Nature 329:489–490

    CAS  PubMed  Google Scholar 

  • Kumar A, Warner JR (1972) Characterization of ribosomal precursor particles from HeLa cell nucleoli. J Mol Biol 63:233–246

    CAS  PubMed  Google Scholar 

  • Lalev AI, Nazar RN (2001) A chaperone for ribosome maturation. J Biol Chem 276:16655–16659

    Article  CAS  PubMed  Google Scholar 

  • Lalev AI, Abeyrathne PD, Nazar RN (2000) Ribosomal RNA maturation in Schizosaccharomyces pombe is dependent on a large ribonucleoprotein complex of the internal transcribed spacer 1. J Mol Biol 302:65–77

    Article  CAS  PubMed  Google Scholar 

  • Li YP, Busch RK, Valdez BC, Busch H (1996) C23 interacts with B23, a putative nucleolar-localization-signal- binding protein. Eur J Biochem 237:153–158

    CAS  PubMed  Google Scholar 

  • Liu HT, Yung BY (1999) In vivo interaction of nucleophosmin/B23 and protein C23 during cell cycle progression in HeLa cells. Cancer Lett 144:45–54

    Article  CAS  PubMed  Google Scholar 

  • Maxwell ES, Fournier MJ (1995) The small nucleolar RNAs. Annu Rev Biochem 64:897–934

    Article  CAS  PubMed  Google Scholar 

  • Melekhovets YF, Good L, Elela SA, Nazar RN (1994) Intragenic processing in yeast rRNA is dependent on the 3′ external transcribed spacer. J Mol Biol 239:170–180

    Article  CAS  PubMed  Google Scholar 

  • Miller OL Jr, Beatty BR (1969) Visualization of nucleolar genes. Science 164:955–957

    PubMed  Google Scholar 

  • Mougey EB, O'Reilly M, Osheim Y, Miller OL Jr, Beyer A, Sollner-Webb B (1993a) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619

    CAS  PubMed  Google Scholar 

  • Mougey EB, Pape LK, Sollner-Webb B (1993b) A U3 small nuclear ribonucleoprotein-requiring processing event in the 5′ external transcribed spacer of Xenopus precursor rRNA. Mol Cell Biol 13:5990–5998

    CAS  PubMed  Google Scholar 

  • Olson MOJ (1990) The role of proteins in nucleolar structure and function. In: Strauss PR, Wilson SM (eds) The eukaryotic nucleus—molecular biochemistry and macromolecular assemblies, Vol 2. Telford Press, Caldwell NJ, pp 519–559

  • Orrick LR, Olson MO, Busch H (1973) Comparison of nucleolar proteins of normal rat liver and Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis. Proc Natl Acad Sci U S A 70:1316-1320

    Google Scholar 

  • Osheim YN, Beyer AL (1998) EM visualization of transcriptionally active genes after injection into Xenopus oocyte nuclei. Methods Cell Biol 53:471–496

    CAS  PubMed  Google Scholar 

  • Peculis BA (2001) snoRNA nuclear import and potential for cotranscriptional function in pre-rRNA processing. RNA 7:207–219

    Article  CAS  PubMed  Google Scholar 

  • Prestayko AW, Olson MO, Busch H (1974) Phosphorylation of proteins of ribosomes and nucleolar pre-ribosomal particles in vivo in Novikoff hepatoma ascites cells. FEBS Lett 44:131–135

    Article  CAS  PubMed  Google Scholar 

  • Roger B, Moisand A, Amalric F, Bouvet P (2002) Repression of RNA polymerase I transcription by nucleolin is independent of the RNA sequence that is transcribed. J Biol Chem 277:10209–10219

    Article  CAS  PubMed  Google Scholar 

  • Savino R, Gerbi SA (1991) Preribosomal RNA processing in Xenopus oocytes does not include cleavage within the external transcribed spacer as an early step. Biochimie 73:805–812

    CAS  PubMed  Google Scholar 

  • Scheer U, Benavente R (1990) Functional and dynamic aspects of the mammalian nucleolus. Bioessays 12:14–21

    CAS  PubMed  Google Scholar 

  • Schmidt-Zachmann MS, Nigg EA (1993) Protein localization to the nucleolus: a search for targeting domains in nucleolin. J Cell Sci 105:799–806

    CAS  PubMed  Google Scholar 

  • Seither P, Iben S, Grummt I (1998) Mammalian RNA polymerase I exists as a holoenzyme with associated basal transcription factors. J Mol Biol 275:43–53

    Article  CAS  PubMed  Google Scholar 

  • Serin G, Joseph G, Faucher C, Ghisolfi L, Bouche G, Amalric F, Bouvet P (1996) Localization of nucleolin binding sites on human and mouse pre- ribosomal RNA. Biochimie 78:530–538

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ, Jordan EG (1995) The nucleolus. Annu Rev Cell Dev Biol 11:93–121

    CAS  PubMed  Google Scholar 

  • Sipos K, Olson MO (1991) Nucleolin promotes secondary structure in ribosomal RNA. Biochem Biophys Res Commun 177:673–678

    CAS  PubMed  Google Scholar 

  • Steitz JA, Tycowski KT (1995) Small RNA chaperones for ribosome biogenesis. Science 270:1626–1627

    CAS  PubMed  Google Scholar 

  • Tollervey D, Kiss T (1997) Function and synthesis of small nucleolar RNAs. Curr Opin Cell Biol 9:337–342

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Association pour la Recherche contre le Cancer (ARC), the CNRS (ATIP), and the Fondation pour la Recherche Medicale (FRM) to P.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Bouvet.

Additional information

Edited by: S. Gerbi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roger, B., Moisand, A., Amalric, F. et al. Nucleolin provides a link between RNA polymerase I transcription and pre-ribosome assembly. Chromosoma 111, 399–407 (2003). https://doi.org/10.1007/s00412-002-0221-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-002-0221-5

Keywords

Navigation