Skip to main content
Log in

Solid solutions in the system acanthite (Ag2S)–naumannite (Ag2Se) and the relationships between Ag-sulfoselenides and Se-bearing polybasite from the Kongsberg silver district, Norway, with implications for sulfur–selenium fractionation

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Sulfoselenides [Ag2(S,Se)] and Se-bearing polybasite have been discovered at the Kongsberg silver district. The selenium-bearing minerals occur in two samples from the northern part of the district, forming either single or polyphase inclusions together with chalcopyrite within native silver. The Ag-sulfoselenides show large chemical variations, covering nearly the complete compositional range between acanthite (Ag2S) and naumannite (Ag2Se). For the data presented here, there is no local maximum at the composition Ag4SSe attributed to the distinct phase called aguilarite, suggesting that this composition can be considered as one of many possible along the monoclinic Ag2S–Ag2S0.4Se0.6 solid solution series rather than a specific mineral phase. We present a model explaining the variations in the Se-content of Ag2(S,Se) as a result of gradual de-sulfidization of the rock under oxidizing conditions. During this process, sulfur from the Ag2S-component of Ag2(S,Se) oxidized and dissolved in the fluid phase as SO42−, resulting in the formation of native silver. The activity ratio \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the system gradually decreased due to the removal of SO42−, which resulted in the stabilization of a sulfoselenide with higher selenium content. As a result of reaction progress, grains of Ag2(S,Se) became gradually enclosed in newly formed native silver, and therefore isolated from further reactions with the grain-boundary fluid. Grains isolated early during the process show low content of Se reflecting high \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) of the equilibrium fluid, while grains showing high Se reflect the composition of late low \({a_{{{\text{S}}^{2 - }}}}/{a_{{\text{S}}{{\text{e}}^{2 - }}}}\) fluids. Analyses of Se-bearing polybasite show that selenium is preferentially partitioned into Ag2(S,Se) compared to polybasite. The model presented here demonstrates how oxidation of sulfoselenides leads to fractionation of sulfur and selenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed AH, Arai S, Ikenne M (2009) Mineralogy and paragenesis of the Co-Ni arsenide ores of Bou Azzer, Anti-Atlas, Morocco. Econ Geol 104:249–266

    Article  Google Scholar 

  • Andrews AJ, Owsiacki L, Kerrich R, Strong DF (1986) The silver deposits at cobalt and Gowganda, Ontario. I: geology, petrography, and whole-rock geochemistry. Can J Earth Sci 23:1480–1506

    Article  Google Scholar 

  • Armstrong JGT, Parnell J, Bullock LA, Perez M, Boyce AJ, Feldmann J (2018) Tellurium, selenium and cobalt enrichment in Neoproterozoic black shales, Gwna Group, UK: deep marine trace element enrichment during the second great oxygenation event. Terra Nova 30:244–253

    Article  Google Scholar 

  • Bastin ES (1939) The nickel–cobalt-native silver ore type. Econ Geol 34:1–40

    Article  Google Scholar 

  • Bindi L, Pingitore NE (2013) On the symmetry and crystal structure of aguilarite, Ag4SeS. Min Magn 77:21–31

    Article  Google Scholar 

  • Bindi L, Evain M, Spry PG, Menchetti S (2007) The pearceite-polybasite group of minerals: crystal chemistry and new nomenclature rules. Am Min 92:918–925

    Article  Google Scholar 

  • Bugge C (1917) Kongsbergfeltets geologi. Nor Geol Underst 82:272

    Google Scholar 

  • Bugge A (1932) Gammel og ny geologi ved Kongsberg Sølvverk. Nor Geol Tidsskr 12:123–148

    Google Scholar 

  • Bullock LA, Perez M, Armstrong JG, Parnell J, Still J (2018) Selenium and tellurium resources in Kisgruva Proterozoic volcanogenic massive sulphide deposit (Norway). Ore Geol Rev 99:411–424

    Article  Google Scholar 

  • Burisch M, Gerdes A, Walter BF, Neumann U, Fettel M, Markl G (2017) Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald,SW Germany. Ore Geol Rev 81:42–61

    Article  Google Scholar 

  • Cheilletz A, Levresse G, Gasquet D, Azizi-Samir MR, Zyadi R, Archibald DA, Farrar E (2002) The giant Imiter silver deposit: neoproterozoic epithermal mineralization in the Anti-Atlas. Morocco Miner Depos 37:772–781

    Article  Google Scholar 

  • Cocker HA, Mauk JL, Rabone SDC (2013) The origin of Ag-Au-S-Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand. Miner Depos 48:249–266

    Article  Google Scholar 

  • Coleman RG, Delevaux M (1957) Occurrence of selenium in sulfides from some sedimentary rocks of the western United States. Econ Geol 52:499–527

    Article  Google Scholar 

  • Dill HG (2010) Authigenic heavy minerals a clue to unravel supergene and hypogene alteration of marine and continental sediments of Triassic to Cretaceous age (SE Germany). Sed Geol 228:61–76

    Article  Google Scholar 

  • Drebushchak VA, Pal’yanova GA, Seryoykin YV, Drebushchak TN (2015) Probable metal-insulator transition in Ag4SSe. J Alloys Compos 622:236–242

    Article  Google Scholar 

  • Franklin J, Kissin S, Smyk M, Scott S (1986) Silver deposits associated with the Proterozoic rocks of the Thunder Bay District, Ontario. Can J Earth Sci 23:1576–1591

    Article  Google Scholar 

  • Frigstad OF (1972) Naumannite from Kongsberg silver deposit, south Norway. Contribution to the mineralogy of Norway, No. 50. Nor Geol Tidsskr 52:273–285

    Google Scholar 

  • Gammon JB (1966) Fahlbands in the Precambrian of southern Norway. Econ Geol 61:174–188

    Article  Google Scholar 

  • Genth FA (1891) Contributions to mineralogy, No. 51. Am J Sci Ser 3 41:401–403. https://doi.org/10.2475/ajs.s3-41.245.401

    Article  Google Scholar 

  • Genth FA (1892) Contributions to mineralogy; No. 54. With crystallographic notes by S. L. Penfield. Am J Sci Ser 3 44:381–389. https://doi.org/10.2475/ajs.s3-44.263.381

    Article  Google Scholar 

  • Goldschmidt VM (1954) Geochemistry. Oxford University Press, London, 730 pp

    Google Scholar 

  • Goldschmidt VM, Hefter O (1933) Zur Geochemie des Selens. Nachr Ges Wiss Göttingen. Math-Physik Kl 1 H 2:245–252

    Google Scholar 

  • Hammer Ø, Svensen HH (2017) Biostratigraphy and carbon and nitrogen geochemistry of the SPICE event in Cambrian low-grade metamorphic black shale, Southern Norway. Palaeogeogr Palaeoclim Palaeoecol 468:216–227

    Article  Google Scholar 

  • Heier K (1953) Clausthalite and selenium-bearing galena in Norway. Nor Geol Tidsskr 32:228–231

    Google Scholar 

  • Ihlen PM, Ineson PR, Mitchell JG, Vokes FM (1984) K-Ar dating of dolerite dykes in the Kongsberg-Fiskum district, Norway, and their relationship with the silver and base metal veins. Nor Geol Tidsskr 64:87–96

    Google Scholar 

  • Ineson PR, Mitchell JG, Vokes FM (1975) K-Ar dating of epigenetic mineral deposits: an investigation of the Permian metallogenic province of the Oslo Region, southern Norway. Econ Geol 70:1426–1436

    Article  Google Scholar 

  • Jacobsen SB, Heier KS (1978) Rb-Sr isotope systematics inmetamorphic rocks, Kongsberg sector, south Norway. Lithos 11:257–276

    Article  Google Scholar 

  • Ji C, Zhang Y, Zhang X, Wang P, Shen H, Gao W, Wang Y, Yu WW (2017) Synthesis and characterization of Ag2SxSe1 – x nanocrystals and their photoelectrochemical property. Nanotechnology 28:6

    Google Scholar 

  • Karakaya I, Thompson WT (1990) The Ag–Se (Silver–Selenium) system. Bull Alloy Phase Diagr 11:266–271

    Article  Google Scholar 

  • Kissin SA (1992) Five-element (Ni–Co–As–Ag–Bi) veins. Geosci Can 19:113–124

    Google Scholar 

  • Kotková J, Kullerud K, Šrein V, Drábek M, Škoda R (2018) The Kongsberg silver deposits, Norway: Ag–Hg–Sb mineralization and constraints for the formation of the deposits. Miner Depos https://doi.org/10.1007/s00126-017-0757-1

    Google Scholar 

  • Krivovichev VG, Charykova MV, Vishnevsky AV (2017) The thermodynamics of selenium minerals in near-surface environments. Minerals. https://doi.org/10.3390/min7100188

    Google Scholar 

  • Lipp U, Flach S (2003) Wismut-, Kobalt-, Nickel- und Silbererze im Nordteil des Schneeberger Lagerstättenbezirkes. Bergbau in Sachsen 10:1–210

    Google Scholar 

  • Markl G, Burisch M, Neumann U (2016) Natural fracking and the genesis of five-element veins. Miner Depos 51:703–712

    Article  Google Scholar 

  • Márquez-Zavalía MF, Bindi L, Márquez M, Menchetti S (2008) Se-bearing polybasite-Tac from the Martha mine, Macizo del Deseado, Santa Cruz, Argentina. Mineral Petrol 94:145–150

    Article  Google Scholar 

  • Misra K (2000) Understanding mineral deposits. Springer, New York 845 pp

    Book  Google Scholar 

  • Moore CR (1979) Geology and mineralization of the former Broken Hills gold mine, Hikuai, Coromandel, New Zealand. N Z J Geol Geophys 22:339–351

    Article  Google Scholar 

  • Neumann H (1944) Silver deposits at Kongsberg. Norges Geol Unders 162:133

    Google Scholar 

  • Ondruš P, Veselovský F, Gabašová A, Drábek M, Dobeš P, Malý K, Hloušek J, Sejkora J (2003) Ore-forming processes and mineral parageneses of the Jáchymov ore district. J Czech Geol Soc 48:157–192

    Google Scholar 

  • Øyvik M (1997) Structural development of the silver mines at Kongsberg (in Norwegian). Cand Scient thesis, Univ of Oslo

  • Pal’yanova GA, Chudnenko KV, Zhuravkova TV (2014) Thermodynamic properties of solid solutions in the system Ag2S–Ag2Se. Thermochim Acta 575:90–96

    Article  Google Scholar 

  • Pal’yanova GA, Kravtsova RG, Zhuravkova TV (2015) Ag2(S,Se) solid solutions in the ores of the Rogovik gold–silver deposit (northeastern Russia). Russ Geol Geophys 56:1738–1748

    Article  Google Scholar 

  • Petruk W, Owens DR, Stewart JM, Murray EJ (1974) Observations on acanthite, aguilarite and naumannite. Can Mineral 12:365–369

    Google Scholar 

  • Pingitore NE, Ponce BF, Moreno F, Podpora C (1992) Solid solutions in the system Ag2S–Ag2Se. J Mater Res 7:2219–2224

    Article  Google Scholar 

  • Pingitore NE, Ponce BF, Estrada L, Eastman MP, Yuan HL, Porter LC, Estrada G (1993) Calorimetric analysis of the system Ag2S–Ag2Se between 25 and 250 °C. J Mater Res 8:3126–3130

    Article  Google Scholar 

  • Ramdohr P (1969) The ore minerals and their intergrowths. Pergamon, New York, 1174 pp

    Google Scholar 

  • Robie RA, Bethke PM, Toulmin MS, Edwards JL (1966) X-ray crystallographic data, densities, and molar volumes of minerals. Geol Soc Amer Memoir 97:27–74

    Article  Google Scholar 

  • Rosana MF, Matsueda H (2002) Cikidang hydrothermal gold deposit in Western Java, Indonesia. Resour Geol 52:341–352

    Article  Google Scholar 

  • Rose G (1828) Über ein neues Selenerz vom Harz. Poggendorffs Annalen der Physik Chemie 14:471–473

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767

    Article  Google Scholar 

  • Shikazono N (1978) Selenium content of acanthite and the chemical environments of Japanese vein-type deposits. Econ Geol 73:524–533

    Article  Google Scholar 

  • Škácha P, Sejkora J, Plášil J (2017) Selenide Mineralization in the Příbram Uranium and Base-Metal District (Czech Republic). Minerals https://doi.org/10.3390/min7060091

    Google Scholar 

  • Stanton RL (1972) Ore petrology. McGraw-Hill, New York, pp 713

    Google Scholar 

  • Starmer IC (1985) The evolution of the south Norwegian Proterozoic as revealed by the major and mega-tectonics of the Kongsberg and Bamle sectors. In: Tobi AC, Touret JLT (eds) The deep Proterozoic crust in the North Atlantic Provinces. Reidel, Dordrecht, pp 259–290

    Chapter  Google Scholar 

  • Staude S, Wagner T, Markl G (2007) Mineralogy, mineral compositions and fluid evolution at the Wenzel hydrothermal deposit, southern Germany: implications for the formation of Kongsberg-type silver deposits. Can Mineral 45:1147–1176

    Article  Google Scholar 

  • Staude S, Werner W, Mordhorst T, Wemmer K, Jacob DE, Markl G (2012) Multi-stage Ag–Bi–Co–Ni–U and Cu–Bi vein mineralization at Wittichen, Schwarzwald, SW Germany: geological setting, ore mineralogy, and fluid evolution. Miner Depos 47:251–276

    Article  Google Scholar 

  • Torgersen E, Viola G, Zwingmann H, Henderson IHC (2015) Inclined K– Ar illite age spectra in brittle fault gouges: effects of fault reactivation and wall-rock contamination. Terra Nova 27:106–113

    Article  Google Scholar 

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge, pp 493

    Google Scholar 

  • Viola G, Bingen B, Solli A (2016) Bedrock map: Kongsberg lithotectonic unit, Kongsberg–Modum–Hønefoss Scale 1: 100 000. Nor Geol Unders

  • Warmada IW, Lehmann B, Simandjuntak M (2003) Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold–silver deposit, West Java, Indonesia. Can Mineral 41:185–200

    Article  Google Scholar 

  • Wilkerson G, Deng QP, Llavona R, Goodell P (1988) The Batopilas mining district, Chihuahua, Mexico. Econ Geol 83:1721–1736

    Article  Google Scholar 

  • Xiao C, Xu J, Li K, Feng J, Yang J, Xie Y (2012) Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance. J Am Chem Soc 134:4287–4293

    Article  Google Scholar 

  • Yamamoto Y (1976) Relationship between Se/S and sulfur isotope ratios of hydrothermal sulfide minerals. Miner Depos 11:197–209

    Article  Google Scholar 

  • Zhuravkova TV, Palyanova GA, Kravtsova RG (2015) Physicochemical formation conditions of silver sulfoselenides at the Rogovik deposit, Northeastern Russia. Geol Ore Depos 57:313–330

    Article  Google Scholar 

Download references

Acknowledgements

This research has been funded by the internal project 331100 of the Czech Geological Survey as a part of its Strategic research plan. Christian Berg is thanked for the photographs used in Fig. 2. Constructive comments from Galina Palyanova and Mathias Burisch improved the manuscript significantly. Chris Ballhaus is thanked for the editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kåre Kullerud.

Additional information

Communicated by Chris Ballhaus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kullerud, K., Kotková, J., Šrein, V. et al. Solid solutions in the system acanthite (Ag2S)–naumannite (Ag2Se) and the relationships between Ag-sulfoselenides and Se-bearing polybasite from the Kongsberg silver district, Norway, with implications for sulfur–selenium fractionation. Contrib Mineral Petrol 173, 71 (2018). https://doi.org/10.1007/s00410-018-1500-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1500-3

Keywords

Profiles

  1. Radek Škoda