Skip to main content
Log in

Phosphorus zoning as a recorder of crystal growth kinetics: application to second-generation olivine in mantle xenoliths from the Cima Volcanic Field

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Composite mantle xenoliths from the Cima Volcanic Field (CA, USA) contain glassy veins that cross-cut lithologic layering and preserve evidence of lithospheric melt infiltration events. Compositions and textures of minerals and glasses from these veins have the potential to place constraints on the rates and extents of reaction during infiltration. We studied glass-bearing regions of two previously undescribed composite xenoliths, including optical petrography and chemical analysis for major and trace elements by electron probe microanalysis and laser-ablation inductively coupled plasma mass spectrometry. The petrogenetic history of each vein involves melt intrusion, cooling accompanied by both wall-rock reaction and crystallization, quench of melt to a glass, and possibly later modifications. Exotic secondary olivine crystals in the veins display concentric phosphorus (P)-rich zoning, P-rich glass inclusions, and zoning of rapidly diffusing elements (e.g., Li) that we interpret as records of rapid disequilibrium events and cooling rates on the order of 10 °C/h. Nevertheless, thermodynamic modeling of the diversity of glass compositions recorded in one of the samples demonstrates extensive reaction with Mg-rich olivine from the matrix before final quench. Our results serve as a case study of methods for interpreting the rates and processes of lithospheric melt-rock reactions in many continental and oceanic environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behavior. Contrib Miner Petrol 152:1–17

    Article  Google Scholar 

  • Agrell SO, Charnley NR, Chinner GA (1998) Phosphoran olivine from Pine Canyon, Piute Co., Utah. Mineral Mag 62:265–269

    Article  Google Scholar 

  • Allison CM, Porter RC, Fouch MJ, Semken S (2013) Seismic evidence for lithospheric modification beneath the Mojave Neovolcanic Province, Southern California. Geophys Res Lett 40(19):5119–5124

    Article  Google Scholar 

  • Asimow PD (1999) A model that reconciles major-and trace-element data from abyssal peridotites. Earth Planet Sci Lett 169(3):303–319

    Article  Google Scholar 

  • Asimow PD, Ghiorso MS (1998) Algorithmic modifications extending MELTS to calculate subsolidus phase relations. Am Miner 83:1127–1132

    Article  Google Scholar 

  • Asimow PD, Hirschmann MM, Stolper EM (2001) Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts. J Petrol 42(5):963–998

    Article  Google Scholar 

  • Asimow PD, Dixon JE, Langmuir CH (2004) A hydrous melting and fractionation model for mid-ocean ridge basalts: application to the Mid-Atlantic Ridge near the Azores. Geochem Geophys Geosyst 5(1):1–24

    Article  Google Scholar 

  • Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375(6529):308–311

    Article  Google Scholar 

  • Beattie P (1993) The effect of partial melting of spinel peridotite on uranium series disequilibria: constraints from partitioning studies. Earth Planet Sci Lett 177:379–391

    Article  Google Scholar 

  • Behr WM, Hirth G (2014) Rheological properties of the mantle lid beneath the Mojave region in southern California. Earth Planet Sci Lett 393:60–72

    Article  Google Scholar 

  • Benn K, Nicolas A, Reuber I (1988) Mantle—crust transition zone and origin of wehrlitic magmas: Evidence from the Oman ophiolite. Tectonophysics 151(1–4):75–85

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372(6505):452–454

    Article  Google Scholar 

  • Boesenberg JS, Hewins RH (2010) An experimental investigation into the metastable formation of phosphoran olivine and pyroxene. Geochim Cosmochim Ac 74:1923–1941

    Article  Google Scholar 

  • Boesenberg JS, Delaney JS, Hewins RH (2012) A petrological and chemical reexamination of Main Group pallasites formation. Geochim Cosmochim Ac 89:134–158

    Article  Google Scholar 

  • Boudier F, Nicolas A (1995) Nature of the Moho transition zone in the Oman ophiolite. J Petrol 36(3):777–796

    Article  Google Scholar 

  • Boudier F, Nicolas A, Ildefonse B (1996) Magma chambers in the Oman ophiolite: Fed from the top and the bottom. Earth Planet Sci Lett 144(1–2):239–250

    Article  Google Scholar 

  • Brunet F, Chazot G (2001) Partitioning of phosphorus between olivine, clinopyroxene and silicate glass in a spinel xenolith from Yemen. Chem Geol 176:51–72

    Article  Google Scholar 

  • Davis GA, Fowler TK, Bishop K, Brudos TC, Friedmann SJ, Parke ML, Burchfiel BC (1993) Pluton pinning of an active Miocene detachment fault system eastern Mojave Desert, California. Geology 21:267–270

    Article  Google Scholar 

  • Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonnay Z, Dobosi G (2004) Trace element and C–O–Sr–Nd isotope evidence for subduction-related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75(1):89–113

    Article  Google Scholar 

  • Demouchy S, Jacobsen SD, Gaillard F, Stern CR (2006) Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology 34(6):429–432

    Article  Google Scholar 

  • Demouchy S, Ishikawa A, Tommasi A, Alard O, Keshav S (2015) Characterization of hydration in the mantle lithosphere: Peridotite xenoliths from the Ontong Java Plateau as an example. Lithos 212–215:189–201

    Article  Google Scholar 

  • Dohmen R, Kaseman S, Coogan L, Chakraborty S (2010) Diffusion of Li in olivine I: Experimental observations and multispecies diffusion model. Geochim Cosmochim Ac 74:274–292

    Article  Google Scholar 

  • Downes H (2001) Formation and modification of the shallow sub-continental lithospheric mantle: a review of geochemical evidence from ultramafic xenolith suites and tectonically emplaced ultramafic massifs of Western and Central Europe. J Petrol 42:233–250

    Article  Google Scholar 

  • Draper DS, Green TH (1997) P-T phase relations of silicic, alkaline, aluminous mantle-xenolith glasses under anhydrous and C–O–H fluid-saturated conditions. J Petrol 38:1187–1224

    Article  Google Scholar 

  • Ducea M, Sen G, Eiler J, Fimbres J (2002) Melt depletion and subsequent metasomatism in the shallow mantle beneath Koolau volcano, Oahu (Hawaii). Geochem Geophys Geosyst 3(2). doi:10.1029/2001GC000184

  • Dunn T (1987) Partitioning of Hf, Lu, Ti, and Mn between olivine, clinopyroxene and basaltic liquid. Contrib Miner Petrol 96(4):476–484

    Article  Google Scholar 

  • Dunn T, Sen C (1994) Mineral/matrix partition-coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. Geochim Cosmochim Ac 58(2):717–733. doi:10.1016/0016-7037(94)90501-0

    Article  Google Scholar 

  • Elardo SM, Shearer CK (2014) Magma chamber dynamics recorded by oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar meteorite Northwest Africa 032. Am Miner 99:355–368

    Article  Google Scholar 

  • Ennis ME, McSween HY (2014) Crystallization kinetics of olivine-phyric shergottites. Met Planet Sci 49(8):1440–1455

    Article  Google Scholar 

  • Eriksson R, Hayashi M, Seetharaman S (2003) Thermal diffusivity measurements of liquid silicate melts. Int J Thermophys 24(3):785–797

    Article  Google Scholar 

  • Farmer GL, Glazner AF, Wilshire HG, Wooden JL, Pickthorn WJ, Katz M (1995) Origin of late Cenozoic basalts at the Cima volcanic field, Mojave Desert, California. J Geophys Res 100:8399–8415

    Article  Google Scholar 

  • Faure F, Trolliard G, Nicollet C, Montel JM (2003) A developmental model of olivine morphology as a function of the cooling rate and the degree of undercooling. Contrib Miner Petrol 145(2):251–263

    Article  Google Scholar 

  • First E, Hammer J (2016) Igneous cooling history of olivine-phyric shergottite Yamato 980459 constrained by dynamic crystallization experiments. Met Planet Sci 7:1233–1255

    Article  Google Scholar 

  • Foley SF, Prelevic D, Rehfeldt T, Jacob DE (2013) Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet Sci Lett 363:181–191

    Article  Google Scholar 

  • Fonseca RO, Mallmann G, Sprung P, Sommer JE, Heuser A, Speelmanns IM, Blanchard H (2014) Redox controls on tungsten and uranium crystal/silicate melt partitioning and implications for the U/W and Th/W ratio of the lunar mantle. Earth Planet Sci Lett 404:1–13

    Article  Google Scholar 

  • Gass IG (1968) Is the Troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220(5162):39–42

    Article  Google Scholar 

  • Gass IG, Masson-Smith D (1963) The geology and gravity anomalies of the troodos massif, cyprus. Phil Trans Roy Soc London Series A Math Phys Eng Sci 255(1060):417–467

    Article  Google Scholar 

  • Gee LL, Sack RO (1988) Experimental petrology of melilite nephelinites. J Petrol 29(6):1233–1255

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Miner Petrol 119(2–3):197–212

    Article  Google Scholar 

  • Ghiorso MS, Hirschmann MM, Reiners PW, Kress VC (2002) The pMELTS: A revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem Geophys Geosystems 3(5):1–35

    Article  Google Scholar 

  • Goodrich CA (1984) Phosphoran pyroxene and olivine in silicate inclusions in natural iron-carbon alloy, Disko Island, Greenland. Geochim Cosmochim Ac 48(5):1115–1126

    Article  Google Scholar 

  • Grant TB, Kohn SC (2013) Phosphorus partitioning between olivine and melt: an experimental study in the system Mg2SiO4–Ca2Al2Si2O9–NaAlSi3O8–Mg3(PO4)2. Am Miner 98:1860–1869

    Article  Google Scholar 

  • Grégoire M, Chevet J, Maaloe S (2010) Composite xenoliths from Spitsbergen: evidence of the circulation of MORB-related melts within the upper mantle. Geologic Soc London Special Publications 337(1):71–86

    Article  Google Scholar 

  • Hawkesworth CJ, Rogers NW, van Calsteren PWC, Menzies MA (1984) Mantle enrichment processes. Nature 311:331–335

    Article  Google Scholar 

  • Hilchie L, Fedortchouk Y, Matveev S, Kopylova MG (2014) The origin of high hydrogen content in kimberlitic olivine: Evidence from hydroxyl zonation in olivine from kimberlites and mantle xenoliths. Lithos 202:429–441

    Article  Google Scholar 

  • Holycross ME, Watson EB (2016) Diffusive fractionation of trace elements in basaltic melt. Contrib Miner Petrol 171(10):80

    Article  Google Scholar 

  • Howarth GH, Barry PH, Pernet-Fisher JF, Baziotis IP, Pokhilenko NP, Pokhilenko LN, Bodnar RJ, Taylor LA, Agashev AM (2014) Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184:209–224

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35:753–785

    Article  Google Scholar 

  • Ionov DA, Bodinier JL, Mukasa SB, Zanetti A (2002) Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenoliths from Spitsbergen in the context of numerical modelling. J Petrol 43(12):2219–2259

    Article  Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. Am J Sci 280-A:389–426

    Google Scholar 

  • Jambon A, Lussiez P, Clocchiatti R, Weisz J, Hernandez J (1992) Olivine growth rates in a tholeiitic basalt: an experimental study of melt inclusions in plagioclase. Chem Geol 96(3):277–287

    Article  Google Scholar 

  • Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostandards Geoanalytical Res 29:285–302

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostandards Geoanalytical Res 35:397–429

    Article  Google Scholar 

  • Kempton PD (1987) Mineralogic and geochemical evidence for differing styles of metasomatism in spinel lherzolite xenoliths: enriched mantle source regions of basalts. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 45–89

    Google Scholar 

  • Kinzler RJ, Langmuir CH (1995) Minute mantle melts. Nature 375(6529):274–275

    Article  Google Scholar 

  • Lagabrielle Y, Bodinier JL (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites French Pyrenees. Terra Nova 20(1):11–21

    Article  Google Scholar 

  • Laubier M, Grove TL, Langmuir CH (2014) Trace element mineral/melt partitioning for basaltic and basaltic andesitic melts: an experimental and laser ICP-MS study with application to the oxidation state of mantle source regions. Earth Planet Sci Lett 392:265–278

    Article  Google Scholar 

  • Le Roux V, Bodinier JL, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259(3):599–612

    Article  Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1–2):34–43

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2009) Continental and oceanic crust recycling-induced melt–peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Liu Y, Gao S, Hu Z, Gao C, Zong K, Wang D (2010a) Continental and oceanic crust recycling-induced melt–peridotite interactions in the trans-North China orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J Petrol 51(1–2):537–571

    Article  Google Scholar 

  • Liu S, Su W, Hu R, Feng C, Gao S, Coulson IM, Wang T, Feng G, Tao Y, Xia Y (2010b) Geochronological and geochemical constraints on the petrogenesis of alkaline ultramafic dykes from southwest Guizhou Province, SW China. Lithos 114(1):253–264

    Article  Google Scholar 

  • Lofgren G (1980) Experimental studies on the dynamic crystallization of silicate melts. In: Hargraves RB (ed) The physics of magmatic processes, Princeton University Press, Princeton, New Jersey, pp 487–551

    Google Scholar 

  • Lorand JP, Alard O, Luguet A (2010) Platinum-group element micronuggets and refertilization process in Lherz orogenic peridotite (northeastern Pyrenees, France). Earth Planet Sci Lett 289(1):298–310

    Article  Google Scholar 

  • Ludington S, Moring BC, Miller RJ, Stone PA, Bookstrom AA, Bedford DR, Hopkins MJ (2007) Preliminary integrated geologic map databases for the United States. California, Nevada, Arizona, Washington, Oregon, Idaho, and Utah. Version, Western States, p 1

    Google Scholar 

  • Luffi P, Saleeby JB, Lee C-TA, Ducea MN (2009) Lithospheric mantle duplex beneath the central Mojave desert revealed by xenoliths from Dish Hill, California. J Geophys Res 114:B03202. doi:10.1029/2008JB005906

    Article  Google Scholar 

  • Maisonneuve CB, Costa F, Huber C, Vonlanthen P, Bachmann O, Dungan MA (2016) How do olivines record magmatic events? Insights from major and trace element zoning. Contrib Miner Petrol 171(6):1–20

    Article  Google Scholar 

  • Mallmann G, O’Neill HCSt, Klemme S (2009) Heterogeneous distribution of phosphorus in olivine from otherwise well-equilibrated spinel peridotite xenoliths and its implications for the mantle geochemistry of lithium. Contrib Miner Petrol 158:485–504

    Article  Google Scholar 

  • McCanta MC, Beckett JR, Stolper EM (2016) Correlations and zoning patterns of phosphorus and chromium in olivine from H chondrites and the LL chondrite Semarkona. Met Planet Sci 51:520–546

    Article  Google Scholar 

  • McCubbin FM, Shearer CK, Burger PV, Hauri EH, Wang JH, Elardo SM, Papike JJ (2014) Volatile abundances of coexisting merrillite and apatite in the martian meteorite Shergotty: implications for merrillite in hydrous magmas. Am Miner 99:1347–1354

    Article  Google Scholar 

  • McCubbin FM, Vander Kaaden KE, Tartese R, Boyce JW, Mikhail S, Whitson ES, Bell AS, Anand M, Franchi IA, Wang JH, Hauri EH (2015) Experimental investigation of F, Cl, and OH partitioning between apatite and Fe-rich basaltic melt at 1.0–1.2 GPa and 950–1000 °C. Am Miner 100:1790–1802

    Article  Google Scholar 

  • Menzies MA, Rogers N, Tindle AG, Hawkesworth CJ (1987) Metasomatic and enrichment processes in lithospheric peridotites, an effect of asthenosphere-lithosphere interaction. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic Press, London, pp 313–361

  • Mercier JC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Article  Google Scholar 

  • Miller C, Zanetti A, Thöni M, Konzett J, Klötzli U (2012) Mafic and silica-rich glasses in mantle xenoliths from Wau-en-Namus, Libya: Textural and geochemical evidence for peridotite–melt reactions. Lithos 128:11–26

    Article  Google Scholar 

  • Milman-Barris MS, Beckett JR, Baker MB, Hofmann AE, Morgan Z, Crowley MR, Vielzeuf D, Stolper E (2008) Zoning of phosphorus in igneous olivines. Contrib Miner Petrol 155:739–765

    Article  Google Scholar 

  • Moores EM, Vine FJ (1971) The Troodos Massif, cyprus and other ophiolites as oceanic crust: evaluation and implications. Phil Trans Roy Soc London Series A Math Phys Eng Sci 268(1192):443–467

    Article  Google Scholar 

  • Mukasa SB, Wilshire HG (1997) Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: implications for evolution of the subcontinental lithospheric mantle. J Geophys Res 102:20133–20148

    Article  Google Scholar 

  • Nealey LD, Sheridan MF (1989) Post-Laramide volcanic rocks of Arizona and northern Sonora, Mexico, and their inclusions, geologic evolution of Arizona. Arizona Geol Soc Digest 17:609–648

    Google Scholar 

  • Nekvasil H, Dondolini A, Horn J, Filiberto J, Long H, Lindsley DH (2004) The origin and evolution of silica-saturated alkalic suites: an experimental study. J Petrol 45(4):693–721

    Article  Google Scholar 

  • Nicolas A, Prinzhofer A (1983) Cumulative or residual origin for the transition zone in ophiolites: Structural evidence. J Petrol 24(2):188–206

    Article  Google Scholar 

  • Nielson JE, Budahn JR, Unruh DM, Wilshire HG (1993) Actualistic models of mantle metasomatism documented in a composite xenolith from Dish Hill, Californiac. Geochim Cosmochim Ac 57(1):105–121

    Article  Google Scholar 

  • Ottolini L, Laporte D, Raffone N, Devidal JL, Le Fèvre B (2009) New experimental determination of Li and B partition coefficients during upper mantle partial melting. Contrib Miner Petrol 157(3):313–325

    Article  Google Scholar 

  • Pertermann M, Hofmeister AM (2006) Thermal diffusivity of olivine-group minerals at high temperature. Am Miner 91(11–12):1747–1760

    Article  Google Scholar 

  • Peslier AH, Bizimis M (2014) H diffusion in olivine and pyroxene from peridotite xenoliths and a Hawaiian magma speedometer. Lunar and Planetary Science and Exploration, Goldschmidt, 8–13 June, Sacramento, California

  • Peslier AH, Woodland AB, Wolff JA (2008) Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim Cosmochim Ac 72(11):2711–2722

    Article  Google Scholar 

  • Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contrib Miner Petrol 159(5):621–643

    Article  Google Scholar 

  • Ryan JG (1989) The systematics of lithium, beryllium and boron in young volcanic rocks. Ph.D. Dissertation, Columbia University, New York

  • Sakyi PA, Tanaka R, Kobayashi K, Nakamura E (2012) Inherited Pb isotopic records in olivine antecryst-hosted melt inclusions from Hawaiian lavas. Geochim Cosmochim Ac 95:169–195

    Article  Google Scholar 

  • Schiano P, Clocchiatti R (1994) Worldwide occurrence of silica-rich melts in sub-continental and sub-oceanic mantle minerals. Nature 368(6472):621–624

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Shimizu N, Weis D, Mattielli N (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: implications for metasomatism in the oceanic upper mantle. Earth Planet Sci Lett 123(1):167–178

    Article  Google Scholar 

  • Schulte-Pelkum V, Biasi G, Sheehan A, Jones C (2011) Differential motion between upper crust and lithospheric mantle in the central Basin and Range. Nature Geosciences 4(9):619–623

    Article  Google Scholar 

  • Shaw CSJ, Klügel A (2002) The pressure and temperature conditions and timing of glass formation in mantle-derived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral: melt reaction. Miner Petrol 74:163–187

    Article  Google Scholar 

  • Shaw CS, Heidelbach F, Dingwell DB (2006) The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contrib Miner Petrol 151(6):681–697

    Article  Google Scholar 

  • Shea T, Lynn KJ, Garcia MO (2015) Cracking the olivine zoning code: distinguishing between crystal growth and diffusion. Geology 43(10):935–938

    Article  Google Scholar 

  • Shearer CK, Aaron PM, Burger PV, Guan Y, Bell AS, Papike JJ (2013) Petrogenetic linkages among fO2, isotopic enrichments-depletions and crystallization history in Martian basalts. Evidence from the distribution of phosphorus in olivine megacrysts. Geochim Cosmochim Ac 120:17–38

    Article  Google Scholar 

  • Smith PM, Asimow PD (2005) Adiabat_1ph: a new public front-end to the MELTS, pMELTS, and pHMELTS models. Geochem Geophys Geosystems 6(2):Q02004. doi:10.1029/2004GC000816

    Article  Google Scholar 

  • Soedjatmiko B, Christensen NI (2000) Seismic anisotropy under extended crust: evidence from upper mantle xenoliths, Cima volcanic field, California. Tectonophysics 321(3):279–296

    Article  Google Scholar 

  • Solovova IP, Girnis AV, Kogarko LN, Kononkova NN (2005) Compositions of magmas and carbonate-silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy. Lithos 85:113–128

    Article  Google Scholar 

  • Spandler C, O’Neill HSC (2010) Diffusion and partition coefficients of minor and trace elements in San Carlos olivine at 1300 C with some geochemical implications. Contrib Miner Petrol 159(6):791–818

    Article  Google Scholar 

  • Spandler C, O’Neill HSC, Kamenetsky VS (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature 447(7142):303–306

    Article  Google Scholar 

  • Taura H, Yurimoto H, Kurita K, Sueno S (1998) Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Miner 25(7):469–484

    Article  Google Scholar 

  • Tiller WA, Jackson KA, Rutter JW, Chalmers B (1953) The redistribution of solute atoms during the solidification of metals. Acta Metall 1(4):428–437

    Article  Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Article  Google Scholar 

  • Toplis MJ, Libourel G, Carroll MR (1994) The role of phosphorus in crystallisation processes of basalt: an experimental study. Geochim Cosmochim Ac 58(2):797–810

    Article  Google Scholar 

  • Tropper P, Recheis A, Konzett J (2004) Pyrometamorphic formation of phosphorus-rich olivines in partially molten metapelitic gneisses from a prehistoric sacrificial burning site (Ötz Valley, Tyrol, Austria). Eur J Miner 16(4):631–640

    Article  Google Scholar 

  • Tschegg C, Ntaflos T, Kiraly F, Harangi S (2010) High temperature corrosion of olivine phenocrysts in Pliocene basalts from Banat, Romania. Austrian J Earth Sci 103(1):101–110

    Google Scholar 

  • Turrin BD, Dohrenwend JC, Drake RE, Curtis GH (1985) K-Ar ages from the Cima volcanic field, eastern Mojave Desert, California. Isochron West 44:9–16

    Google Scholar 

  • Villemant B (1988) Trace-element evolution in the Phlegrean fields (Central-Italy): fractional crystallization and selective enrichment. Contrib Miner Petrol 98(2):169–183

    Article  Google Scholar 

  • Warren JM, Hauri EH (2014) Pyroxenes as tracers of mantle water variations. J Geophys Res Solid Earth 119(3):1851–1881

    Article  Google Scholar 

  • Watson EB, Liang Y (1995) A simple model for sector zoning in slowly grown crystals: implications for growth rate and lattice diffusion, with emphasis on accessory minerals in crustal rocks. Am Miner 80(11–12):1179–1187

    Article  Google Scholar 

  • Watson EB, Müller T (2009) Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions. Chem Geol 267:111–124

    Article  Google Scholar 

  • Watson EB, Cherniak DJ, Holycross ME (2015) Diffusion of phosphorus in olivine and molten basalt. Am Miner 100:2053–2065

    Article  Google Scholar 

  • Welsch B, Faure F, Famin V, Baronnet A, Bachèlery P (2013) Dendritic crystallization: a single process for all the textures of olivine in basalts? J Petrol 54(3):539–574

    Article  Google Scholar 

  • Welsch B, Hammer J, Hellebrand E (2014) Phosphorus zoning reveals dendritic architecture of olivine. Geology 42:867–870

    Article  Google Scholar 

  • Welsch B, Hammer J, Baronnet A, Jacob S, Hellebrand E, Sinton J (2016) Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contrib Miner Petrol 171(1):1–19

    Article  Google Scholar 

  • Wilshire HG, McGuire AV (1996) Magmatic infiltration and melting in the lower crust and upper mantle beneath the Cima volcanic field, California. Contrib Miner Petrol 123:358–374

    Article  Google Scholar 

  • Wilshire HG, Meyer CE, Nakata JK, Calk LC, Shervais JW, Nielson JE, Schwarzman EC (1988) Mafic and ultramafic xenoliths from volcanic rocks of the western United States. United States Geol Survey Prof Paper 1443:179

    Google Scholar 

  • Wilshire HG, McGuire AV, Noller JS, Turrin BD (1991) Petrology of lower crustal and upper mantle xenoliths from the Cima volcanic field, California. J Petrol 32:169–200

    Article  Google Scholar 

  • Witt-Eickschen G, Kramm U (1998) Evidence for the multiple stage evolution of the subcontinental lithospheric mantle beneath the Eifel (Germany) from pyroxenite and composite pyroxenite/peridotite xenoliths. Contrib Miner Petrol 131(2–3):258–272

    Article  Google Scholar 

  • Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221(1):65–101

    Article  Google Scholar 

  • Wulff-Pedersen E, Neumann ER, Jensen BB (1996) The upper mantle under La Palma, Canary Islands: formation of Si–K–Na-rich melt and its importance as a metasomatic agent. Contrib Miner Petrol 125(2–3):113–139

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2001) The effect of cation charge on crystal–melt partitioning of trace elements. Earth Planet Sci Lett 188(1):59–71

    Article  Google Scholar 

  • Wulff-Pedersen E, Neumann ER, Vannucci R, Bottazzi P, Ottolini L (1999) Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib Miner Petrol 137:59–82

    Article  Google Scholar 

  • Yaxley GM, Kamenetsky V (1999) In situ origin for glass in mantle xenoliths from southeastern Australia: insights from trace element compositions of glasses and metasomatic phases. Earth Planet Sci Lett 172:97–109

    Article  Google Scholar 

  • Yurtmen S, Rowbotham G, İşler F, Floyd PA (2000) Petrogenesis of basalts from southern Turkey: the Plio-Quaternary volcanism to the north of Iskenderun Gulf. Geological Society London Special Publications 173(1):489–512

    Article  Google Scholar 

  • Zanetti A, Tiepolo M, Oberti R, Vannucci R (2004) Trace-element partitioning in olivine: modelling of a complete data set from a synthetic hydrous basanite melt. Lithos 75(1):39–54

    Article  Google Scholar 

  • Zhang HF, Nakamura E, Kobayashi K, Ying JF, Tang YJ (2010a) Recycled crustal melt injection into lithospheric mantle: implication from cumulative composite and pyroxenite xenoliths. Int J Earth Sci 99(6):1167–1186

    Article  Google Scholar 

  • Zhang Y, Ni H, Chen Y (2010b) Diffusion data in silicate melts. Rev Miner Geochem 72:311–408

    Article  Google Scholar 

Download references

Acknowledgements

The studied specimens were loaned for this research by the Division of Petrology and Volcanology, Department of Mineral Sciences, Smithsonian Institution. We are grateful for the editorial handling by Mark Ghiorso, and the fruitful comments made by Benoit Welsch and an anonymous reviewer. I.B. funds for this research project implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program “Education and Lifelong Learning” (Action’s Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State, and the IKYDA project with title: “Petrology and Geochemistry of composite mantle xenoliths”. PDA is supported by the US NSF through geoinformatics award EAR-1550934. Quadlab is funded by a Grant to MS from the Villum Foundation. JWB was supported by NASA Grant NNX13AG40G. DP acknowledges the European Research Council (ERC) for the Consolidator Grant ERC-2013-CoG No. 612776–CHRONOS. We are really grateful for thoughtful comments by Prof. Ed Stolper and his contributions throughout the gestation of this manuscript. An earlier version of this manuscript was reviewed by G. Wörner, Cliff Shaw, Benoit Welsch, and an anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Baziotis.

Additional information

Communicated by Mark S Ghiorso.

Electronic supplementary material

Below is the link to the electronic supplementary material.

410_2017_1376_MOESM1_ESM.tif

Fig.S1 Münster EPMA analyses of standard reference materials using the same analytical conditions as the EPMA P-in-Olivine analyses (15kV, 50 nA, 20 s peak and 10 s background counting time) compared to the published P-concentrations (TIFF 97 kb)

410_2017_1376_MOESM2_ESM.tif

Fig.S2 Münster LA-ICP-MS trace element analyses of the reference materials BCR2-G (a), BIR1-G (b) and BHVO2-G (c) using various internal standards, compared to preferred GeoRem concentrations. (d) Measured Li concentrations for reference materials compared to preferred published concentrations; all protocols tested are successful except for 26Mg internal standard in BCR-2G (TIFF 2457 kb)

410_2017_1376_MOESM3_ESM.jpg

Fig.S3 Thin section mosaic for sample Ci-1-196 showing the protogranular to porphyroclastic dunite layer at the left, and equigranular websterite and lherzolite layers in the middle (JPEG 6786 kb)

410_2017_1376_MOESM4_ESM.tif

Fig.S4 Sample Ci-1-196 BSE images. (a) Spinel with sieved margin between olivine crystals in the lherzolite matrix. (b) Enlarged view of part of the sieved margin in contact with plagioclase, olivine and glass (TIFF 5667 kb)

410_2017_1376_MOESM5_ESM.tif

Fig.S5 Sample Ci-1-196 BSE images. (a) Amphibole partly decomposed to a glass-bearing symplectite. (b) Enlarged view of symplectite, composed of glass, clinopyroxene, olivine and orthopyroxene (TIFF 5461 kb)

410_2017_1376_MOESM6_ESM.tif

Fig.S6 Sample Ki-5-301 BSE images. (a) Orthopyroxene crystals hosting rounded sulfide inclusions and interstitial clinopyroxene grains. (b) Large (600 × 1200 μm) anhedral spinel occurring in the lherzolite layer showing thin sieved margins and non-sieve core (TIFF 6784 kb)

410_2017_1376_MOESM7_ESM.tif

Fig.S7 Sample Ki-5-301 BSE images. (a) Apatite-free area of vein with a maximum width ~50 μm; Fe-rich olivine formed as overgrowth on olivine and as discrete grains between pyroxene and glass (former melt). (b) Ilmenite crystals up to ~20 μm occur within the glass layer or as thin rims on plagioclase (TIFF 7158 kb)

410_2017_1376_MOESM8_ESM.tif

Fig.S8 Trace element patterns normalized to primitive mantle (PM) for (a) olivine, (b) clinopyroxene, (c) glass and (d) apatite. In (a), all analyses correspond to olivine crystals from MV (TIFF 1020 kb)

410_2017_1376_MOESM9_ESM.tif

Fig.S9 Rare earth elements normalized to CI chondrite for (a) olivine, (b) clinopyroxene, (c) glass and (d) apatite. In (a), all analyses correspond to olivine crystals from MV. Symbols as in Fig. S6 (TIFF 663 kb)

410_2017_1376_MOESM10_ESM.tif

Fig.S10 Pyroxene compositional range projected into Wo-En-Fs ternary. Analyses range from augite to diopside while covering a significant range in Fe content (triangles: sample Ci-1-196; boxes: Ki-5-301) (TIFF 490 kb)

410_2017_1376_MOESM11_ESM.tif

Fig.S11 MgO variation diagrams for major oxides (in wt%) for glass analyses in sample Ci-1-196. Abbreviations as in Fig. 5 (TIFF 2368 kb)

410_2017_1376_MOESM12_ESM.tif

Fig.S12 TAS diagram and MgO variation diagrams for major oxides (in wt%) and Mg# for glass analyses in sample Ki-5-301. Abbreviations as in Fig. 5. Glass composition fields as in figure 6 (TIFF 1589 kb)

410_2017_1376_MOESM13_ESM.tif

Fig.S13 Qualitative X-ray maps (Ca, Na, Ti) of the olivine grain shown in Fig. 4f from sample Ki-5-301 (the rest of the x-ray maps are given in fig.12). The upper part is shown on panels a-c and the lower part on panels d-f. Brighter grey-scale values indicate higher concentration of the indicated element. Discrete spinel, apatite, and glass inclusions are visible in the olivine (TIFF 3753 kb)

Supplementary material 14 (XLSX 12 kb)

Supplementary material 15 (XLSX 16 kb)

Supplementary material 16 (XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baziotis, I., Asimow, P.D., Ntaflos, T. et al. Phosphorus zoning as a recorder of crystal growth kinetics: application to second-generation olivine in mantle xenoliths from the Cima Volcanic Field. Contrib Mineral Petrol 172, 58 (2017). https://doi.org/10.1007/s00410-017-1376-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1376-7

Keywords

Navigation