Skip to main content
Log in

A REE-in-plagioclase–clinopyroxene thermometer for crustal rocks

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A REE-in-plagioclase-clinopyroxene thermometer has been developed on the basis of the temperature- and composition-dependent rare-earth element (REE) partitioning between coexisting plagioclase and clinopyroxene. This two-mineral exchange thermobarometer is constructed using parameters from lattice strain models for REE + Y partitioning in plagioclase and in clinopyroxene that were independently calibrated against experimentally determined mineral-melt partitioning data. An important advantage of this REE-based thermometer is that it can provide accurate temperatures through linear least-squares analysis of REE + Y as a group. Applications of the REE-in-plagioclase-clinopyroxene thermometer to volcanic and cumulate rocks show that temperatures derived from the new thermometer agree well with independently constrained magma crystallization temperatures, which adds confidence to applications of the REE-exchange thermometer to natural rocks with a wide spectrum of composition (i.e., from basalt to rhyolite). However, systematic temperature differences appear between the REE- and Mg-exchange thermometers for the volcanic and cumulate rocks. Through numerical simulations of diffusion in plagioclase-clinopyroxene systems, we demonstrate that (1) due to their slower diffusion rates, REE in minerals preferentially records crystallization or near-crystallization temperatures of the rock, and that (2) Mg is readily rest to lower temperatures for rocks from intermediately or slowly cooled magma bodies but records the initial crystallization temperatures of rocks from rapidly cooled magmas. Given their distinct diffusive responses to temperature changes, REE and Mg closure temperatures recorded by the two thermometers can be used in concert to study thermal and magmatic histories of plagioclase- and clinopyroxene-bearing rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Sources of the experimental data are provided in Sun and Liang (2012) and Sun et al. (2017) and are also summarized in supplementary Tables S1 and S2

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Almeev RR, Holtz F, Koepke J, Parat F (2012) Experimental calibration of the effect of H2O on plagioclase crystallization in basaltic melt at 200 MPa. Am Mineral 97:1234–1240

    Article  Google Scholar 

  • Anders E, Grevesse N (1989) Abundances of the elements: Meteoritic and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Anderson AT, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Mineral 78:794–803

    Google Scholar 

  • Ashwal LD, Webb SJ, Knoper MW (2005) Magmatic stratigraphy in the Bushveld Northern Lobe: continuous geophysical and mineralogical data from the 2950 m Bellevue drillcore. S Afr J Geol 108:199–232

    Article  Google Scholar 

  • Barsanti M, Papale P, Barbato D, Moretti R, Boschi E, Hauri E, Longo A (2009) Heterogeneous large total CO2 abundance in the shallow magmatic system of Kilauea volcano, Hawaii. Journal of Geophysical Research: Solid Earth 114(B12)

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Carmichael IS (2004) The activity of silica, water, and the equilibration of intermediate and silicic magmas. Am Mineral 89:1438–1446

    Article  Google Scholar 

  • Cawthorn RG, Webb SJ (2013) Cooling of the Bushveld Complex, South Africa: implications for paleomagnetic reversals. Geology 41:687–690

    Article  Google Scholar 

  • Charlier B, Grove TL (2012) Experiments on liquid immiscibility along tholeiitic liquid lines of descent. Contrib Mineral Petrol 164:27–44

    Article  Google Scholar 

  • Charlier B, Namur O, Grove TL (2013) Compositional and kinetic controls on liquid immiscibility in ferrobasalt–rhyolite volcanic and plutonic series. Geochim Cosmochim Acta 113:79–93

    Article  Google Scholar 

  • Cherniak DJ (2003) REE diffusion in feldspar. Chem Geol 193:25–41

    Article  Google Scholar 

  • Cherniak DJ (2010) Cation diffusion in feldspars. Rev Mineral Geochem 72:691–733

    Article  Google Scholar 

  • Cherniak DJ, Dimanov A (2010) Diffusion in pyroxene, mica and amphibole. Rev Mineral Geochem 72:641–690

    Article  Google Scholar 

  • Chin EJ, Lee CTA, Luffi P, Tice M (2012) Deep lithospheric thickening and refertilization beneath continental arcs: case study of the P, T and compositional evolution of peridotite xenoliths from the Sierra Nevada, California. J Petrol 53:477–511

    Article  Google Scholar 

  • Costa F, Chakraborty S, Dohmen R (2003) Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim Cosmochim Acta 67:2189-2200

    Article  Google Scholar 

  • Davies G, Cawthorn RG (1984) Mineralogical data on a multiple intrusion in the Rustenburg Layered Suite of the Bushveld Complex. Mineral Mag 48:469–480

    Article  Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petrol 40:259–274

    Article  Google Scholar 

  • Dygert N, Liang Y (2015) Temperatures and cooling rates recorded in REE in coexisting pyroxenes in ophiolitic and abyssal peridotites. Earth Planet Sci Lett 420:151–161

    Article  Google Scholar 

  • Ehlers K, Powell R (1994) An empirical modification of Dodson’s equation for closure temperature in binary systems. Geochimica et cosmochimica Acta 58:241–248

  • Eiler JM, Baumgartner LP, Valley JW (1992) Intercrystalline stable isotope diffusion: a fast grain boundary model. Contrib Mineral Petrol 112:543–557

    Article  Google Scholar 

  • Faak K, Chakraborty S, Coogan LA (2013) Mg in plagioclase: Experimental calibration of a new geothermometer and diffusion coefficients. Geochim Cosmochim Acta 123:195–217

    Article  Google Scholar 

  • Faak K, Coogan LA, Chakraborty S (2014) A new Mg-in-plagioclase geospeedometer for the determination of cooling rates of mafic rocks. Geochim Cosmochim Acta 140:691–707

    Article  Google Scholar 

  • Fedele L, Zanetti A, Morra V, Lustrino M, Melluso L, Vannucci R (2009) Insights on the clinopyroxene/liquid trace element partitioning in natural trachyte-trachyphonolite systems: an EMP/LA-ICP-MS case study from Campi Flegrei (southern Italy). Contrib Mineral Petrol 158:337–356

    Article  Google Scholar 

  • Fedele L, Lustrino M, Melluso L, Morra V, Zanetti A, Vannucci R (2015) Trace-element partitioning between plagioclase, alkali feldspar, Ti-magnetite, biotite, apatite, and evolved potassic liquids from Campi Flegrei (Southern Italy). Am Mineral 100:233–249

    Article  Google Scholar 

  • Ganguly J, Tirone M (1999) Diffusion closure temperature and age of a mineral with arbitrary extent of diffusion: theoretical formulation and applications. Earth Planet Sci Lett 170:131–140

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Glazner AF (1984) Activities of olivine and plagioclase components in silicate melts and their application to geothermometry. Contrib Mineral Petrol 88:260–268

    Article  Google Scholar 

  • Grove TL, Baker MB, Kinzler RJ (1984) Coupled CaAl-NaSi diffusion in plagioclase feldspar: experiments and applications to cooling rate speedometry. Geochim Cosmochim Acta 48:2113–2121

    Article  Google Scholar 

  • Halter WE, Heinrich CA, Pettke T (2004) Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II: evidence for magma mixing and magma chamber evolution. Contrib Mineral Petrol 147:397–412

    Article  Google Scholar 

  • Humphreys MC (2009) Chemical Evolution of Intercumulus Liquid, as Recorded in Plagioclase Overgrowth Rims from the Skaergaard Intrusion. J Petrol 50:127–145

    Article  Google Scholar 

  • Kudo AM, Weill DF (1970) An igneous plagioclase thermometer. Contrib Mineral Petrol 25:52–65

    Article  Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506

    Article  Google Scholar 

  • Lasaga AC, Richardson SM, Holland HD (1977) The mathematics of cation diffusion and exchange between silicate minerals during retrograde metamorphism. In: Saxena SK, Bhattacharji S (eds) Energetics of Geological Processes. Springer-Verlag, New York, pp 353–388

    Chapter  Google Scholar 

  • Lee CTA, Harbert A, Leeman WP (2007) Extension of lattice strain theory to mineral/mineral rare-earth element partitioning: an approach for assessing disequilibrium and developing internally consistent partition coefficients between olivine, orthopyroxene, clinopyroxene and basaltic melt. Geochim Cosmochim Acta 71:481–496

    Article  Google Scholar 

  • Liang Y (2014) Time scales of diffusive re-equilibration in bi-mineralic systems with and without a fluid or melt phase. Geochim Cosmochim Acta 132:274–287

    Article  Google Scholar 

  • Liang Y (2015) A simple model for closure temperature of a trace element in cooling bi-mineralic systems. Geochim Cosmochim Acta 165:35–43

    Article  Google Scholar 

  • Liang Y, Sun C, Yao L (2013) A REE-in-two-pyroxene thermometer for mafic and ultramafic rocks. Geochim Cosmochim Acta 102:246–260

    Article  Google Scholar 

  • Luhr JF, Carmichael IS (1980) The colima volcanic complex, Mexico. Contrib Mineral Petrol 71:343–372

    Article  Google Scholar 

  • Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34:937–940

    Article  Google Scholar 

  • Mathez EA (1973) Refinement of the Kudo-Weill plagioclase thermometer and its application to basaltic rocks. Contrib Mineral Petrol 41:61–72

    Article  Google Scholar 

  • Morse SA (2010) A critical comment on Thy et al. (2009b): Liquidus temperatures of the Skaergaard magma. Am Mineral 95:1817–1827

    Article  Google Scholar 

  • Müller T, Dohmen R, Becker HW, Ter Heege JH, Chakraborty S (2013) Fe–Mg interdiffusion rates in clinopyroxene: experimental data and implications for Fe–Mg exchange geothermometers. Contrib Mineral Petrol 166:1563–1576

    Article  Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Higgins MD, Liégeois JP, Vander Auwera J (2010) Crystallization sequence and magma chamber processes in the ferrobasaltic Sept Iles layered intrusion, Canada. J Petrol 51:1203–1236

    Article  Google Scholar 

  • Namur O, Charlier B, Pirard C, Hermann J, Liégeois JP, Vander Auwera J (2011) Anorthosite formation by plagioclase flotation in ferrobasalt and implications for the lunar crust. Geochim Cosmochim Acta 75:4998–5018

    Article  Google Scholar 

  • Namur O, Charlier B, Toplis MJ, Vander Auwera J (2012) Prediction of plagioclase-melt equilibria in anhydrous silicate melts at 1-atm. Contrib Mineral Petrol 163:133–150

    Article  Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  Google Scholar 

  • Norman M, Garcia MO, Pietruszka AJ (2005) Trace-element distribution coefficients for pyroxenes, plagioclase, and olivine in evolved tholeiites from the 1955 eruption of Kilauea Volcano, Hawaiʼi, and petrogenesis of differentiated rift-zone lavas. Am Mineral 90:888–899

    Article  Google Scholar 

  • Putirka KD (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: Tests of some existing models and new calibrations. Am Mineral 90:336–346

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120

    Article  Google Scholar 

  • Seitz HM, Altherr R, Ludwig T (1999) Partitioning of transition elements between orthopyroxene and clinopyroxene in peridotitic and websteritic xenoliths: new empirical geothermometers. Geochim Cosmochim Acta 63:3967–3982

    Article  Google Scholar 

  • Severs MJ, Beard JS, Fedele L, Hanchar JM, Mutchler SR, Bodnar RJ (2009) Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions. Geochim Cosmochim Acta 73:2123–2141

    Article  Google Scholar 

  • Stosch HG (1982) Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochim Cosmochim Acta 46:793–811

    Article  Google Scholar 

  • Sun C, Liang Y (2012) Distribution of REE between clinopyroxene and basaltic melt along a mantle adiabat: effects of major element composition, water, and temperature. Contrib Mineral Petrol 163:807–823

    Article  Google Scholar 

  • Sun C, Liang Y (2013a) Distribution of REE and HFSE between low-Ca pyroxene and lunar picritic melts around multiple saturation points. Geochim Cosmochim Acta 119:340–358

  • Sun C, Liang Y (2013b) The importance of crystal chemistry on REE partitioning between mantle minerals (garnet, clinopyroxene, orthopyroxene, and olivine) and basaltic melts. Chem Geol 358:23–36

  • Sun C, Liang Y (2014) An assessment of subsolidus re-equilibration on REE distribution among mantle minerals olivine, orthopyroxene, clinopyroxene, and garnet in peridotites. Chem Geol 372:80–91

    Article  Google Scholar 

  • Sun C, Liang Y (2015) A REE-in-garnet-clinopyroxene thermobarometer for eclogites, granulites and garnet peridotites. Chem Geol 393:79–92

    Article  Google Scholar 

  • Sun C, Graff M, Liang Y (2017) Trace element partitioning between plagioclase and silicate melt: the importance of temperature and plagioclase composition, with implications for terrestrial and lunar magmatism. Geochim Cosmochim Acta (in press). doi:10.1016/j.gca.2017.03.003

  • Tanner D, Mavrogenes JA, Arculus RJ, Jenner FE (2014) Trace element stratigraphy of the Bellevue Core, Northern Bushveld: multiple magma injections obscured by diffusive processes. J Petrol 55:859–882

    Article  Google Scholar 

  • Thy P, Tegner C, Lesher CE (2009) Liquidus temperatures of the Skaergaard magma. Am Miner 94:1371–1376

    Article  Google Scholar 

  • Van Orman JA, Grove TL, Shimizu N (2001) Rare earth element diffusion in diopside: influence of temperature, pressure, and ionic radius, and an elastic model for diffusion in silicates. Contrib Miner Petrol 141:687–703

    Article  Google Scholar 

  • Van Orman JA, Cherniak DJ, Kita NT (2014) Magnesium diffusion in plagioclase: dependence on composition, and implications for thermal resetting of the 26 Al–26 Mg early solar system chronometer. Earth Planet Sci Lett 385:79–88

    Article  Google Scholar 

  • VanTongeren JA, Mathez EA (2013) Incoming magma composition and style of recharge below the pyroxenite marker, eastern Bushveld complex, South Africa. J Petrol 54:1585–1605

    Article  Google Scholar 

  • Vigouroux N, Wallace PJ, Kent AJ (2008) Volatiles in high-K magmas from the western Trans-Mexican volcanic belt: evidence for fluid fluxing and extreme enrichment of the mantle wedge by subduction processes. J Petrol 49:1589–1618

    Article  Google Scholar 

  • Wang C, Liang Y, Xu W (2015) On the significance of temperatures derived from major element and REE based two-pyroxene thermometers for mantle xenoliths from the North China Craton. Lithos 224:101–113

    Article  Google Scholar 

  • Wardell LJ, Kyle PR, Dunbar N, Christenson B (2001) White Island volcano, New Zealand: carbon dioxide and sulfur dioxide emission rates and melt inclusion studies. Chem Geol 177:187–200

    Article  Google Scholar 

  • Waters LE, Lange RA (2015) An updated calibration of the plagioclase-liquid hygrometer–thermometer applicable to basalts through rhyolites. Am Miner 100:2172–2184

    Article  Google Scholar 

  • Watson EB, Cherniak DJ (2013) Simple equations for diffusion in response to heating. Chem Geol 335:93–104

    Article  Google Scholar 

  • Witt-Eickschen G, O’Neill HSC (2005) The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem Geol 221:65–101

    Article  Google Scholar 

  • Wood BJ, Blundy JD (2002) The effect of H 2 O on crystal-melt partitioning of trace elements. Geochim Cosmochim Acta 66:3647–3656

    Article  Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Yao L, Liang Y (2015) Closure temperature in cooling bi-mineralic systems: I. Definition and with application to REE-in-two-pyroxene thermometer. Geochim Cosmochim Acta 162:137–150

    Article  Google Scholar 

  • Yao L, Sun C, Liang Y (2012) A parameterized model for REE distribution between low-Ca pyroxene and basaltic melts with applications to REE partitioning in low-Ca pyroxene along a mantle adiabat and during pyroxenite-derived melt and peridotite interaction. Contrib Miner Petrol 164:261–280

    Article  Google Scholar 

  • Zajacz Z, Halter W (2007) LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning. Geochim Cosmochim Acta 71:1021–1040

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jill VanTongeren, Lewis Ashwal, Fred Roelofse, Christian Tegner, and Lijing Yao for useful discussion. Thoughtful reviews by Cin-Ty Lee and an anonymous reviewer helped to improve this manuscript. C. Sun acknowledges support from the Devonshire postdoctoral scholarship at WHOI. This work was supported in part by the NSF grants EAR-1220076 and EAR-1632815, and NASA grant NNX13AH07G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Sun.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 451 kb)

Supplementary material 2 (PDF 3329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Liang, Y. A REE-in-plagioclase–clinopyroxene thermometer for crustal rocks. Contrib Mineral Petrol 172, 24 (2017). https://doi.org/10.1007/s00410-016-1326-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1326-9

Keywords

Navigation