Skip to main content

Advertisement

Log in

The effect of aluminum and water on the development of deformation fabrics of orthopyroxene

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The effect of alumina and water solubility on the development of fabric in orthopyroxene in response to simple shear deformation has been investigated at a pressure of 1.5 GPa and a temperature of 1,100 °C using the D-DIA apparatus. The microstructure observations at these conditions indicate that dislocation glide is the dominant deformation mechanism. In MgSiO3 enstatite and hydrous aluminous enstatite, partial dislocations bounding the stacking faults in [001] glide parallel to the (100) (or) the (100) [001] slip system. Electron backscattered diffraction analysis of anhydrous aluminous enstatite, however, indicates operation of the (010) [001] slip system, and microstructure analysis indicates dislocation movement involving [001] on both (100) and {210} planes. The strong covalent bonding induced by the occupation of M1 and T2 sites by Al could have restricted the glide on (100), activating slip on {210}. The resulting seismic anisotropies (~2 %) in orthopyroxene are weaker compared to olivine (~9.5 %), and reduced anisotropy can be expected if orthopyroxene coexists with olivine. Weak anisotropy observed in stable cratonic regions can be explained by the relatively high abundance of orthopyroxene in these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amiguet E, Cordier P, Raterron P (2010) Deformation of diopside single crystals at mantle pressure. TEM characterization of dislocation microstructures. Eur J Minerl 22:181–187

    Article  Google Scholar 

  • Arai S, Abe N (1995) Reaction of orthopyroxene in peridotite xenoliths with alkali basalt melts and its implication for genesis of alpine-type chromitite. Am Miner 80:1041–1047

    Google Scholar 

  • Baptiste V, Tommasi A, Demouchy S (2012) Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton. SA Litho’s. doi:10.1016/j.lithos.2012.05.001

    Google Scholar 

  • Bascou J, Barruol G, Vauches A, Mainprice D, Egydio-Silva M (2001) EBSD-measured lattice-preferred orientations and seismic properties of eclogites. Tectonophysics 342:61–80

    Article  Google Scholar 

  • Bascou J, Tommasi A, Mainprice D (2002) Plastic deformation and development of clinopyroxene lattice preferred orientations in eclogites. J Struct Geol 24:1357–1368

    Article  Google Scholar 

  • Bell DR, Ihinger PD, Rossman GR (1995) Quantitative analysis of trace OH in garnet and pyroxenes. Am Miner 80:465–474

    Google Scholar 

  • Ben Ismail W, Mainprice D (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296:145–158

    Article  Google Scholar 

  • Blackman DK, Wenk HR, Kendall JM (2002) Seismic anisotropy of the upper mantle: 1. Factors that affect mineral texture and effective elastic properties. Geochem Geophys Geosyst 3:8601. doi: 10.1029/2001GC000247

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Article  Google Scholar 

  • Bunge HJ (1982) Texture analysis in materials sciences. Butterworths, London, p 593

    Google Scholar 

  • Carter NL, Baker DW, George RP Jr (1972) Seismic anisotropy, flow, and constitution of the upper mantle. In: Heard HC, Borg IY, Carter NL, Raleyigh CB (eds) Flow and fracture of rocks. Am Geophys Union, Washington, DC, pp 167–190

    Chapter  Google Scholar 

  • Chai M, Brown JM, Slutsky LJ (1997) The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J Geophys Res 102:14779–14785

    Article  Google Scholar 

  • Coe RS, Kirby SH (1975) The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing: mechanism and potential applications. Contrib Minel Petrol 52:29–55

    Article  Google Scholar 

  • Couvy H, Frost DJ, Heidelbach F, Krisztián N, Ungár T, Mackwell S, Cordier P (2004) Shear deformation experiments of forsterite at 11 GPa-1,400°C in the multianvil apparatus. Eur J Mineral 16:877–889

    Article  Google Scholar 

  • Dick HJB, Fisher RL (1984) Mineralogic studies of the residues of mantle melting: Abyssal and Alpine-type peridotites. In: Kornprobst J (ed) Kimberlites. II. The mantle and crust-mantle relationships. Proceedings of the third international kimberlite conference, Elsevier, New York, pp 295–308

    Google Scholar 

  • Falus G, Tommasi A, Ingrin J, Szabo C (2008) Deformation and seismic anisotropy of the lithospheric mantle in the southeastern carpathians inferred from the study of mantle xenoliths. Earth Planet Sci Lett 272:50–64

    Article  Google Scholar 

  • Fouch MJ, Rondenay S (2006) Seismic anisotropy beneath stable continental interiors. Phys Earth Planet Int 158:292–320

    Article  Google Scholar 

  • Franz L, Becker KP, Kramer W, Herzig M (2002) Metasomatic mantle xenoliths from the bismarck microplate (Papua New Guinea)—thermal evolution, geochemistry and extent of slab-induced metasomatism. J Petrol 43:315–343

    Article  Google Scholar 

  • Gasparik T (2003) Phase diagram for geoscientists. Springer, Germany, p 146

    Google Scholar 

  • Godard G, Van Roermund HLM (1995) Deformation-induced clinopyroxene from eclogites. J Struct Geol 17:1425–1443

    Article  Google Scholar 

  • Ionov DA (2010) Petrology of mantle wedge lithosphere: New data on supra-subduction zone peridotite xenoliths from the andesitic Avacha volcano, Aamchatka. J Petrol 51:327–361

    Article  Google Scholar 

  • Jackson JM, Sinogeikin SV, Bass JD (1999) Elasticity of MgSiO3 orthoenstatite. Am Mineral 84:677–680

    Google Scholar 

  • Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1462

    Article  Google Scholar 

  • Jung H, Katayama I, Jiang Z, Hiraga T, Karato S (2006) Effects of water and stress on the lattice preferred orientation in olivine. Tectonophysics 42:1–22

    Article  Google Scholar 

  • Kaminski É, Ribe NM (2001) A kinematic model for recrystallization and texture development in olivine polycrystals. Earth Planet Sci Lett 189:253–267

    Article  Google Scholar 

  • Karato SI (1995) Effects of water on seismic wave velocities in the upper mantle. Proc Jpn Acad 71:61–66

    Article  Google Scholar 

  • Katayama I, Karato SI (2006) Effects of temperature on the B- to C-type fabric transition in olivine. Phys Earth Planet Int 157:33–45

    Article  Google Scholar 

  • Katayama I, Jung H, Karato SI (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32:1045–1048

    Article  Google Scholar 

  • Katayama I, Michibayashi K, Terao R, Ando JI, Komiya T (2011) Water content of the mantle xenoliths from Kimberley and implications for explaining textural variations in cratonic roots. Geol J 46:173–182

    Article  Google Scholar 

  • Kohlstedt DL, Vander Sande JB (1973) Transmission electron microscopy investigations of the defect microstructure of four natural orthopyroxenes. Contrib Mineral Petrol 42:169–180

    Article  Google Scholar 

  • Kopylova MG, Russell JK, Cookenboo H (1999) Petrology of peridotite and pyroxenite xenoliths from the Jericho Kimberlite: implications for the thermal state of the mantle beneath the Slave Craton, Northern Canada. J Petrol 40:79–104

    Article  Google Scholar 

  • Lane DL, Ganguly J (1980) AlrO, solubility in orthopyroxene in the system MgO-A1rOr-SiOr: a re-evaluation, and mantle geotherm. J Geophys Res 85:6963–6972

    Article  Google Scholar 

  • Lebensohn RA, Tomé CN (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconion alloys. Acta Metall Mater 41:2611–2624

    Article  Google Scholar 

  • Mackwell SJ (1991) High temperature rheology of enstatite: implications for creep in the mantle. Geophys Res Lett 18:2027–2030

    Article  Google Scholar 

  • Mainprice D (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16:385–393

    Article  Google Scholar 

  • Mainprice D, Silver PG (1993) Interpretation of SKS-waves using samples from the subcontinental lithosphere. Phys Earth Planet Int 78:257–280

    Article  Google Scholar 

  • Mainprice D, Barroul G, Ben Ismail W (2000) The seismic anisotropy of the Earth’s mantle: from single crystal to polycrystals. In: Karato SI, Forte A, Liebermann RC, Masters G, Stixrude L (eds) Earth’s deep interior. Am Geophys Union, Washington, DC, pp 237–264

  • Mauler A, Bystricky M, Kunze K, Mackwell S (2000) Microstructure and lattice preferred orientations in experimentally deformed clinopyroxene aggregates. J Struct Geol 22:1633–1648

    Article  Google Scholar 

  • Mauler A, Godard G, Kunze K (2001) Crystallographic fabrics of omphacite, rutile and quartz in vendee eclogites (Armorican Massif, France). Consequences for deformation mechanisms and regimes. Tectonophysics 342:81–112

    Article  Google Scholar 

  • Mierdel K, Keppler H, Smyth JR, Langenhorst F (2007) Water solubility in aluminous orthopyroxene and the origin of earth’s asthenosphere. Science 315:364–368

    Article  Google Scholar 

  • Miyajima N, Walte N (2009) Burgers vector determination in deformed perovskite and post-perovskite of CalrO3 using thickness fringes in weak-beam dark-field images. Ultramicroscopy 109:683–692

    Article  Google Scholar 

  • Nazé L, Doukhan N, Doukhan JC, Latrous K (1987) A TEM study of lattice defects in naturally and experimentally deformed orthopyroxenes. Bull Mineral 110:497–512

    Google Scholar 

  • Ohuchi T, Karato SI, Fujino K (2010) Strength of single-crystal orthopyroxene under lithospheric conditions. Contrib Mineral Petrol 161:961–975

    Article  Google Scholar 

  • Perkins D, Anthony EY (2011) The evolution of spinel lherzolite xenoliths and the nature of the mantle at kilbourne hole, New Mexico. Contrib Mineral Petrol 162:1139–1157

    Article  Google Scholar 

  • Rauch M, Keppler H (2002) Water solubility in orthopyroxene. Contrib Mineral Petrol 143:525–536

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and petrology of the earth’s mantle. McGraw-Hill, New York, p 618

    Google Scholar 

  • Ross JV, Nielsen KC (1978) High-temperature flow of wet polycrystalline enstatite. Tectonophysics 44:233–261

    Article  Google Scholar 

  • Sanchez-Valle C, Wang J, Stalder R (2012) Elasticity of hydrous alumina-bearing orthopyroxene (submitted)

  • Satsukawa T, Michibayashi K, Anthony EY, Stern RJ, Gao SS, Liu KH (2011) Seismic anisotropy of the uppermost mantle beneath the rio grande rift: Evidence from kilbourne hole peridotite xenoliths, New Mexico. Earth and Planet Sci Let 311:172–181

    Article  Google Scholar 

  • Skemer P, Katayama I, Karato S (2006) Deformation fabrics of a peridotite from Cima di Gagnone, central Alps, Switzerland: Evidence of deformation under water-rich condition at lower temperatures. Contrib Mineral Petrol 152:43–51

    Article  Google Scholar 

  • Skogby H (2006) Water in natural mantle minerals I. Pyroxenes. In: Keppler H, Smith JR (eds) Water in nominally anhydrous minerals. 62:155-167

  • Smyth JR, Mierdel K, Keppler H, Langenhorst F, Dubrovinsky L, Nestola F (2007) Crystal chemistry of hydration in aluminous orthopyroxene. Am Miner 92:973–976

    Article  Google Scholar 

  • Soustelle V, Tommasi A, Bodinier JL, Garrido CJ, Vauchez A (2009) Deformation and reactive melt transport in the mantle lithosphere above a large-scale partial melting domain: the ronda peridotite massif, S Spain. J Petrol 50:1235–1266

    Article  Google Scholar 

  • Soustelle V, Tommasi A, Demouchy S, Ionov DA (2010) Deformation and fluid-rock interaction in the supra-subduction mantle: Microstructures and water contents in peridotite xenoliths from the Avacha volcano, Kamchatka. J Petrol 51:363–394

    Article  Google Scholar 

  • Takeda H (1972) Crystallographic studies of coexisting aluminan orthopyroxene and augite of high pressure origin. J Geophys Res 77:5798–5811

    Article  Google Scholar 

  • Van Duysen JC, Doukhan N, Doukhan JC (1985) Transmission electron microscope study of dislocations in orthopyroxene (Mg Fe)2Si2O6. Phys Chem Miner 12:39–44

    Google Scholar 

  • Wang Y, Durham WB, Getting IC, Weidner DJ (2003) The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Rev Sci Instrum 74:3002–3011

    Article  Google Scholar 

Download references

Acknowledgments

We thank H. Ni for help with the FTIR measurements, A. Tommasi for providing the VPSC software and S. Shekhar for help with the modeling, H. Schulze and U. Dittmann for sample preparation, and N. Walte and M. Mookherjee for helpful discussions. Manuscript was benefitted from the constructive reviews from Ikuo Katayama, Roland Stalder and an anonymous reviewer. Funding was provided through the Deutsche Forschungsgemeinschaft (DFG: INST 91/204), the Free State of Bavaria and the Bayerisches Geoinstitut visiting scientist programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. G. M. Manthilake.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manthilake, M.A.G.M., Miyajima, N., Heidelbach, F. et al. The effect of aluminum and water on the development of deformation fabrics of orthopyroxene. Contrib Mineral Petrol 165, 495–505 (2013). https://doi.org/10.1007/s00410-012-0819-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0819-4

Keywords

Navigation