Skip to main content

Advertisement

Log in

Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In order to assess the stability of the primary alluaudite + triphylite assemblage, we performed hydrothermal experiments between 400 and 800°C, starting from the LiNa2Mn x Fe 2+3−x Fe3+(PO4)4 compositions (x = 1.054, 1.502, 1.745) that represent the ideal compositions of the alluaudite + triphylite assemblages from the Kibingo (Rwanda), Hagendorf-Süd (Germany), and Buranga (Rwanda) pegmatites, respectively. The pressure was maintained at 1 kbar, and the oxygen fugacity was controlled by the Ni–NiO buffer. The results of these experiments show that the alluaudite + triphylite assemblage crystallizes at 400 and 500°C, while the association alluaudite + triphylite + marićite appears at 600 and 700°C. The limit between these two domains, at ca. 550°C, corresponds to the maximum temperature that can be reached by the alluaudite + triphylite assemblages in granitic pegmatites, because marićite has never been observed in such geological environments. At 800°C, the formation of the X-phase + triphylite assemblage indicates a strong reduction of the bulk composition, according to the reaction 0.5LiM2+PO4 (triphylite) + 3Na2M2 2+Fe3+(PO4)3 (alluaudite) + 1.5H2O = 4.5NaM2+PO4 (marićite) + Li0.5Na1.5M5 2+(PO4)4 (X-phase) + H3PO4 + 0.75O2 (M2+ = Fe2+, Mn). Secondary ion mass spectrometry (SIMS) was used at our knowledge for the first time to measure Li in all the Li-bearing phosphates. A specific methodological procedure was developed with the ion microprobe to get accurate Li2O data over a wide concentration range spanning from few ppm Li up to ~11 wt%. Li2O. Our SIMS analyses of the synthesized phosphates indicate that the Li contents of alluaudites, marićites, and X-phase increase progressively with temperature, while the Li content of triphylite-type phosphates decreases due to the Li → Na substitution. The Na-exchange equilibrium between triphylite-type phosphates and alluaudite is correlated with the temperature according to the equation: ln(x TriNa /x AllNa ) = −7.0(7) 103/T + 5.4(9). This equation can be used to estimate the crystallization temperature of triphylite–alluaudite assemblages independently of the oxygen fugacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baldwin JR, Von Knorring O (1983) Compositional range of Mn-garnet in zoned granitic pegmatites. Can Mineral 21:683–688

    Google Scholar 

  • Boury P (1981) Comportement du fer et du manganèse dans les associations de phosphates pegmatitiques. Master thesis, University of Liège, p 118

  • Brunet F, Chopin C, Seifert F (1998) Phase relations in the MgO–P2O5–H2O system and the stability of phosphoellenbergerite: petrological implications. Contrib Mineral Petrol 131:54–70

    Article  Google Scholar 

  • Burke EAJ, Ferraris G, Hatert F (2006) New minerals approved in 2006, nomenclature modifications approved in 2006 by the Commission on New Minerals, Nomenclature and Classification, International Mineralogical Association. http://pubsites.uws.edu.au/ima-cnmnc/minerals2006.pdf

  • Burnham CW (1991) LCLSQ version 8.4, least-squares refinement of crystallographic lattice parameters. Department of Earth Planetary Sciences, Harvard University, p 24

  • Černý P (1991) Rare-element granitic pegmatites. Part I: anatomy and internal evolution of pegmatite deposits. Geosci Canada 18(2):49–67

    Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 40:2005–2026

    Google Scholar 

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Černý P, Ercit TS, Vanstone PT (1996) Petrology and mineralization of the Tanco rare-element pegmatite, Southeastern Manitoba. Field trip guidebook A4, Geological Association of Canada/Mineralogical Association of Canada Annual Meeting, Winnipeg, Manitoba, May 27–29, 1996, p 63

  • Eugster HP (1957) Heterogeneous reactions involving oxidation and reduction at high pressures and temperatures. J Chem Phys 26:1760–1761

    Article  Google Scholar 

  • Finger LW, Rapp GR (1969) Refinement of the crystal structure of triphylite. Carnegie Inst Wash Yearbook 68:290–292

    Google Scholar 

  • Fisher DJ (1958) Pegmatite phosphates and their problems. Am Mineral 43:181–207

    Google Scholar 

  • Fontan F (1978) Etude minéralogique et essais expérimentaux sur des phosphates de fer et de manganèse des pegmatites des Jebilet (Maroc) et des Pyrénées (France). PhD thesis, Université Paul-Sabatier, Toulouse, p 250

  • Fontan F, Huvelin P, Orliac M, Permingeat F (1976) La ferrisicklérite des pegmatites de Sidi-Bou-Othmane (Jebilet, Maroc) et le groupe des minéraux à structure de triphylite. Bull Soc française Minéral Cristall 99:274–286

    Google Scholar 

  • Fransolet A-M (1975) Etude minéralogique et pétrologique des phosphates de pegmatites granitiques. PhD thesis, University of Liège, p 333

  • Fransolet A-M (1977) Le problème génétique des alluaudites. Bull Soc française Minéral Cristall 100:348–352

    Google Scholar 

  • Fransolet A-M, Antenucci D, Speetjens J-M (1984) An X-ray determinative method for the divalent cation ratio in the triphylite-lithiophilite series. Min Mag 48:373–381

    Article  Google Scholar 

  • Fransolet A-M, Abraham K, Speetjens J-M (1985) Evolution génétique et signification des associations de phosphates de la pegmatite d’Angarf-Sud, plaine de Tazenakht, Anti-Atlas, Maroc. Bull Minéral 108:551–574

    Google Scholar 

  • Fransolet A-M, Keller P, Fontan F (1986) The phosphate mineral associations of the Tsaobismund pegmatite, Namibia. Contrib Mineral Petrol 92:502–517

    Article  Google Scholar 

  • Fransolet A-M, Antenucci D, Fontan F, Keller P (1994) New relevant data on the crystal chemistry, and on the genetical problem of alluaudites and wyllieites. In: Abstracts of the 16th IMA general meeting, Pisa, pp 125–126

  • Fransolet A-M, Keller P, Fontan F (1997) The alluaudite group minerals: Their crystallochemical flexibility and their modes of formation in the granite pegmatites. In: Abstracts of the meeting “Phosphates: biogenic to exotic”, London

  • Fransolet A-M, Fontan F, Keller P, Antenucci D (1998) La série johnsomervilleite-fillowite dans les associations de phosphates de pegmatites granitiques de l’Afrique centrale. Can Mineral 36:355–366

    Google Scholar 

  • Fransolet A-M, Hatert F, Fontan F (2004) Petrographic evidence for primary hagendorfite in an unusual assemblage of phosphate minerals, Kibingo granitic pegmatite, Rwanda. Can Mineral 42:697–704

    Article  Google Scholar 

  • Geller S, Durand JL (1960) Refinement of the structure of LiMnPO4. Acta Cryst 13:325–331

    Article  Google Scholar 

  • Hatert F (2002) Cristallochimie et synthèse hydrothermale d’alluaudites dans le système Na-Mn-Fe-P-O: contribution au problème de la genèse de ces phosphates dans les pegmatites granitiques. PhD thesis, University of Liège, p 247

  • Hatert F (2004) Etude cristallochimique et synthèse hydrothermale des alluaudites: contribution nouvelle au problème génétique des phosphates de fer et de manganèse dans les pegmatites granitiques et, partant, à celui de l’évolution de ces gisements. Mém Acad royale Sci Belgique, Cl Sci, Coll in-8°, 3ème série XXI: 96 p

  • Hatert F, Keller P, Lissner F, Antenucci D, Fransolet A-M (2000) First experimental evidence of alluaudite-like phosphates with high Li-content: the (Na1-xLix)MnFe2(PO4)3 series (x = 0 to 1). Eur J Mineral 12:847–857

    Google Scholar 

  • Hatert F, Antenucci D, Fransolet A-M, Liégeois-Duyckaerts M (2002) The crystal chemistry of lithium in the alluaudite structure: a study of the (Na1-xLix)CdIn2(PO4)3 solid solution (x = 0 to 1). J Solid State Chem 163:194–201

    Article  Google Scholar 

  • Hatert F, Fransolet A-M, Maresch WV (2006) The stability of primary alluaudites in granitic pegmatites: an experimental investigation of the Na2(Mn2–2xFe1+2x)(PO4)3 system. Contrib Mineral Petrol 152:399–419

    Article  Google Scholar 

  • Héreng P (1989) Contribution à l’étude minéralogique de phosphates de fer et de manganèse de la pegmatite de Buranga, Rwanda. Master thesis, University of Liège, p 101

  • Huvelin P, Orliac M, Permingeat F (1972) Ferri-alluaudite calcifère de Sidi-bou-Othmane (Jebilet, Maroc). Notes Serv géol Maroc 32(241):35–49

    Google Scholar 

  • Keller P, Von Knorring O (1989) Pegmatites at the Okatjimukuju farm, Karibib, Namibia. Part I: Phosphate mineral associations of the Clementine II pegmatite. Eur J Mineral 1:567–593

    Google Scholar 

  • Lahti SI (1981) On the granitic pegmatites of the Eräjärvi area in Orivesi, southern Finland. Geological Survey Finland Bulletin 314: p 82

    Google Scholar 

  • Le Page Y, Donnay G (1977) The crystal structure of the new mineral marićite, NaFePO4. Can Mineral 15:518–521

    Google Scholar 

  • Lefèvre P (2002) Contribution à l’étude minéralogique et pétrographique des associations des phosphates d’aluminium des pegmatites de Rubindi et Kabilizi (Rwanda). Master Thesis, University of Liège, p 58

  • London D (2008) Pegmatites. The Canadian Mineralogist, Special Publication 10, p 347

  • London D, Wolf MB, Morgan GB, Gallego Garrido M (1999) Experimental silicate-phosphate equilibria in peraluminous granitic magmas, with a case study of the Alburquerque batholith at Tres Arroyos, Badajoz, Spain. J Petrol 40:215–240

    Article  Google Scholar 

  • London D, Morgan GB, Wolf MB (2001) Amblygonite-montebrasite solid solutions as monitors of fluorine in evolved granitic and pegmatitic melts. Am Mineral 86:225–233

    Google Scholar 

  • Losey A, Rakovan J, Hughes JM, Francis CA, Dyar MD (2004) Structural variation in the lithiophilite-triphylite series and other olivine-group structures. Can Mineral 42:1105–1115

    Article  Google Scholar 

  • Mason B (1941) Minerals of the Varuträsk pegmatite. XXIII. Some iron-manganese phosphate minerals and their alteration products, with special reference to material from Varuträsk. Geol Fören Stockholm Förh 63:117–175

    Google Scholar 

  • Moore PB (1971) Crystal chemistry of the alluaudite structure type: contribution to the paragenesis of pegmatite phosphate giant crystals. Am Mineral 56:1955–1975

    Google Scholar 

  • Moore PB (1972) Natrophilite, NaMnPO4, has ordered cations. Am Mineral 57:1333–1344

    Google Scholar 

  • Moore PB, Ito J (1979) Alluaudites, wyllieites, arrojadites: crystal chemistry and nomenclature. Mineral Mag 43:227–235

    Article  Google Scholar 

  • O’Neill HSC, Pownceby MI (1993) Thermodynamic data from redox reactions at high temperatures. I. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-”FeO”, Co-CoO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contrib Mineral Petrol 114:296–314

    Article  Google Scholar 

  • Ottolini L, Bottazzi P, Vannucci R (1993) Quantification of lithium, beryllium and boron in silicates by secondary ion mass spectrometry using conventional energy filtering. Anal Chem 65:1960–1968

    Article  Google Scholar 

  • Ottolini L, Camara F, Hawthorne FC, Stirling J (2002) SIMS matrix effects in the analysis of light elements in silicate minerals: Comparison with SREF and EMPA data. Am Mineral 87:1477–1485

    Google Scholar 

  • Roda Robles E, Fontan F, Pesquera Pérez A, Keller P (1998) The Fe-Mn phosphate associations from the Pinilla de Fermoselle pegmatite, Zamora, Spain: occurrence of kryzhanovskite and natrodufrénite. Eur J Mineral 10:155–167

    Google Scholar 

  • Roda E, Fontan F, Pesquera A, Velasco F (1996) The phosphate mineral association of the granitic pegmatites of the Fregeneda area (Salamanca, Spain). Mineral Mag 60:767–778

    Article  Google Scholar 

  • Schmid-Beurmann P, Hatert F (2005) Experimental Fe2+-oxidation in triphylite, LiFePO4: possible formation of ferrisicklerite and heterosite. Berichter der Deutschen Mineralogischen Gesellschaft, Beihefte zum. Eur J Mineral 17:118

    Google Scholar 

  • Sturman BD, Mandarino JA, Corlett MI (1977) Marićite, a sodium iron phosphate from the Big Fish River area, Yukon Territory, Canada. Can Mineral 15:396–398

    Google Scholar 

  • Tuttle OF (1949) Two pressure vessels for silicate-water studies. Geol Soc America Bull 60:1727–1729

    Article  Google Scholar 

  • Wasson JT (1974) Meteorites: classifications and properties. Springer, New York 327 p

    Google Scholar 

  • Yakubovich OV, Simonov MA, Belov NV (1977) The crystal structure of a synthetic triphylite, LiFe[PO4]. Sov Phys Dokl 22:347–350

    Google Scholar 

Download references

Acknowledgments

Many thanks are due to H.-J. Bernhardt, who performed the electron-microprobe analyses at the Ruhr-University of Bochum (Germany), as well as to A.-M. Fransolet, T.L. Grove, J. Webster, and an anonymous reviewer for their constructive comments. FH also thanks the F.N.R.S. (Belgium) for a position of “Chercheur qualifié” and for grants 1.5.113.05.F and 1.5.098.06.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Hatert.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

DOC 73 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatert, F., Ottolini, L. & Schmid-Beurmann, P. Experimental investigation of the alluaudite + triphylite assemblage, and development of the Na-in-triphylite geothermometer: applications to natural pegmatite phosphates. Contrib Mineral Petrol 161, 531–546 (2011). https://doi.org/10.1007/s00410-010-0547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0547-6

Keywords

Navigation