Skip to main content
Log in

The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Within individual plutons, the trace element concentrations in S-type granites generally increase with maficity (total iron and magnesium content and expressed as atomic Fe + Mg in this study); the degree of variability in trace element concentration also expands markedly with the same parameter. The strongly peraluminous, high-level S-type granites of the Peninsular Pluton (Cape Granite Suite, South Africa) are the product of biotite incongruent melting of a metasedimentary source near the base of the crust. Leucogranites within the suite represent close to pure melts from the anatectic source and more mafic varieties represent mixtures of melt and peritectic garnet and ilmenite. Trace elements such as Rb, Ba, Sr and Eu, that are concentrated in reactant minerals in the melting process, show considerable scatter within the granites. This is interpreted to reflect compositional variation in the source. In contrast, elements such as LREE, Zr and Hf, which are concentrated within refractory accessory phases (zircon and monazite), show well-defined negative correlations with increasing SiO2 and increase linearly with increasing maficity. This is interpreted to reflect coupled co-entrainment of accessory minerals and peritectic phases to the melt: leucocratic rocks cannot have evolved from the more mafic compositions in the suite by a process of fractional crystallisation because in this case they would have inherited the zircon-saturated character of this hypothetical earlier magma. Trace element behaviour of granites from the Peninsular Pluton has been modelled via both equilibrium and disequilibrium trace element melting. In the disequilibrium case, melts are modelled as leaving the source with variable proportions of entrained peritectic phases and accessory minerals, but before the melt has dissolved any accessory minerals. Thus, the trace element signature of the melt is largely inherited from the reactants in the melting reaction, with no contribution from zircon and monazite dissolution. In the equilibrium case, melt leaves the source with entrained crystals, after reaching zircon and monazite saturation. A significant proportion of the rocks of the Peninsular Pluton have trace element concentrations below those predicted by zircon and monazite saturation. In the case of the most leucocratic rocks all compositions are zircon undersaturated; whilst the majority of the most mafic compositions are zircon oversaturated. However, in both cases, zircon is commonly xenocrystic. Thus, the leucocratic rocks represent close to pure melts, which escaped their sources rapidly enough that some very closely match the trace element disequilibrium melting model applied in this study. Zircon dissolution rates allow the residency time for the melt in the source to be conservatively estimated at less than 500 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ayres M, Harris N (1997) REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from himalayan leucogranites. Chem Geol 139:249–269. doi:10.1016/S0009-2541(97)00038-7

    Article  Google Scholar 

  • Baker DR, Conte AM, Freda C, Ottolini L (2002) The effect of halogens on Zr diffusion and zircon dissolution in hydrous metaluminous granitic melts. Contrib Mineral Petrol 142:666–678

    Google Scholar 

  • Bea F (1996a) Residence of REE, Y, Th and U in granites and crustal protoliths: implications for the chemistry of crustal melts. J Petrol 37:521–552. doi:10.1093/petrology/37.3.521

    Article  Google Scholar 

  • Bea F (1996b) Controls on the trace element composition of crustal melts. Trans R Soc Edinb Earth Sci 87:33–41

    Google Scholar 

  • Bea F, Montero P, Ortega M (2006) A LA-ICP-MS evaluation of Zr reservoirs in common crustal rocks: implications for Zr and Hf geochemistry, and zircon-forming processes. Can Mineral 44:693–714. doi:10.2113/gscanmin.44.3.693

    Article  Google Scholar 

  • Bea F, Montero P, Gonzalez-Lodeiro F, Talavera C (2007) Zircon inheritance reveals exceptionally fast crustal magma generation processes in central Iberia during the Cambro-Ordovician. J Petrol 48:2327–2339. doi:10.1093/petrology/egm061

    Article  Google Scholar 

  • Bhadra S, Das S, Bhattacharya A (2007) Shear zone-hosted migmatites (Eastern India): the role of dynamic melting in the generation of REE-depleted felsic melts, and implications for disequilibrium melting. J Petrol 48:435–457. doi:10.1093/petrology/egl066

    Article  Google Scholar 

  • Chappell BW (1984) Source rocks of I- and S-type granites in the Lachlan Fold Belt, southeastern Australia. Philos Trans R Soc Lond A 310:693–707

    Article  Google Scholar 

  • Chappell BW, White AJR (1974) Two contracting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chappell BW, White AJR (1992) I-type and S-type granites in the Lachlan fold belt. Trans R Soc Edinb Earth Sci 83:1–26

    Google Scholar 

  • Clemens JD (2003) S-type granitic magmas—petrogenetic issues, models and evidence. Earth Sci Rev 61:1–18. doi:10.1016/S0012-8252(02)00107-1

    Article  Google Scholar 

  • Clemens JD (2006) Melting of the continental crust: fluid regimes, melting reactions and source-rock fertility. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, UK, pp 297–331

    Google Scholar 

  • Clemens JD, Droop GTR, Stevens G (1997) High-grade metamorphism, dehydrations and crustal melting: a reinvestigation based on new experiments in the silica-saturated portion of the system KAlO2-MgO-SiO2-H2O-CO2 at P ≤ 1.5 GPa. Contrib Mineral Petrol 129:308–325. doi:10.1007/s004100050339

    Article  Google Scholar 

  • Collins WJ, Hobbs BE (2001) What caused the early Silurian change from mafic to silicic (S-type) magmatism in the eastern Lachlan Fold Belt? Aust J Earth Sci 48:25–41. doi:10.1046/j.1440-0952.2001.00837.x

    Article  Google Scholar 

  • Connolly JAD (1990) Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Google Scholar 

  • Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metab Geol 20:697–708. doi:10.1046/j.1525-1314.2002.00398.x

    Article  Google Scholar 

  • Copeland P, Parrish RR, Harrison TM (1988) Identification of inherited radiogenic Pb in monazite and its implications for U-Pb systematics. Nature 333:760–763. doi:10.1038/333760a0

    Article  Google Scholar 

  • Da Silva LC, Gresse PG, Scheepers R, McNaughton NJ, Hartmann LA, Fletcher I (2000) U-Pb SHRIMP and Sm-Nd age constraints on the timing and sources ot the Pan-African Cape Granite Suite, South Africa. J Afr Earth Sci 30:795–815. doi:10.1016/S0899-5362(00)00053-1

    Article  Google Scholar 

  • Da Silva LC, McNaughton NJ, Armstrong RA, Hartmann LA, Fletcher IR (2005) The Neoproterozoic Mantiqueira Province and its African connection: a zircon based U-Pb geochronologic subdivision for the Brasiliano/Pan-African systems of orogens. Precambrian Res 136:203–240. doi:10.1016/j.precamres.2004.10.004

    Article  Google Scholar 

  • Downes H, Dupuy C, Leyreloup A (1990) Crustal evolution of the Hercynian belt of Western Europe: evidence from lower crustal xenoliths (French Massif Central). Chem Geol 83:209–231. doi:10.1016/0009-2541(90)90281-B

    Article  Google Scholar 

  • Eggins S (2003) Laser ablation ICP-MS analysis of geological materials prepared as lithium borate glasses. Geostand Geoanal Res 27:147–162. doi:10.1111/j.1751-908X.2003.tb00642.x

    Article  Google Scholar 

  • Elburg MA (1996) U-Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granite: evidence for magma mingling. Contrib Mineral Petrol 123:177–189. doi:10.1007/s004100050149

    Article  Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. Chem Geol 117:251–284. doi:10.1016/0009-2541(94)90131-7

    Article  Google Scholar 

  • Gardien V, Thompson AB, Grujic D, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz ± muscovite assemblages and implications for crustal melting. J Geophys Res Solid Earth 100:15581–15591. doi:10.1029/95JB00916

    Article  Google Scholar 

  • Georget Y, Martineau F, Capdevila R (1986) Age tardi-hercynien et origine crustale du granite de Brignogan (Finistère, France). Conséquences sur l’interprétation des granites Nord-armoricains = Late-hercynian radiometric age and crustal origin of Brignogan granite (Finistere, France). Consequences on the interpretation of the North-Armorican granites. C R Acad Sci Série 2 Méc Phys Chim Sci Univ Sci Terre 302:237–242

    Google Scholar 

  • Goad BE, Cerny P (1981) Peraluminous pegmatitic granites and their pegmatite aureoles in the Winnipeg River District, southeastern Manitoba. Can Mineral 19:177–194

    Google Scholar 

  • Harris N, Ayres M, Massey J (1995) Geochemistry of granitic melts produced during the incongruent melting of muscovite: implications for the extraction of himalayan leucogranite magmas. J Geophys Res 100:15767–15777. doi:10.1029/94JB02623

    Article  Google Scholar 

  • Harris C, Faure K, Diamond RE, Scheepers R (1997) Oxygen and hydrogen isotope geochemistry of S- and I- type granitoids: the Cape Granite Suite, South Africa. Chem Geol 143:95–114. doi:10.1016/S0009-2541(97)00103-4

    Article  Google Scholar 

  • Harris N, Vance D, Ayres M (2000) From sediment to granite: timescales of anatexis in the upper crust. Chem Geol 162:155–167. doi:10.1016/S0009-2541(99)00121-7

    Article  Google Scholar 

  • Hartnady CJH, Newton AR, Theron JN (1974) The stratigraphy and structure of the Malmesbury Group in the southwestern Cape. Bull Precamb Res Unit 15:193–213

    Google Scholar 

  • Irving AJ, Frey FA (1978) Distribution of trace-elements between garnet megacrysts and host volcanic liquids of kimberlitic to rhyolitic composition. Geochim Cosmochim Acta 42:771–787. doi:10.1016/0016-7037(78)90092-3

    Article  Google Scholar 

  • Johannes W, Ehlers C, Kriegsman LM, Mengel K (2003) The link between migmatites and S-type granites in the Turku area, southern Finland. Lithos 68:69–90. doi:10.1016/S0024-4937(03)00032-X

    Article  Google Scholar 

  • Jung S, Mezger K, Masberg P, Hoffer E, Hoernes S (1998) Petrology of an intrusion-related high-grade migmatite: implications for partial melting of metasedimentary rocks and leucosome-forming processes. J Metab Geol 16:425–445. doi:10.1111/j.1525-1314.1998.00146.x

    Article  Google Scholar 

  • Kelsey DE, Clark C, Hand M (2008) Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. J Metab Geol 26:199–212. doi:10.1111/j.1525-1314.2007.00757.x

    Article  Google Scholar 

  • Kingsbury JA, Miller CF, Wooden JL, Harrison TM (1993) Monazite paragenesis and U–Pb systematics in rocks of the eastern Mojave Desert, California: implications for thermochronometry. Chem Geol 110:147–168. doi:10.1016/0009-2541(93)90251-D

    Article  Google Scholar 

  • Montel J-M (1993) A model for monazite melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146. doi:10.1016/0009-2541(93)90250-M

    Article  Google Scholar 

  • Montel JM (1996) Géochimie de la fusion de la croûte continentale. University of Blaise Pascal, Clermont-Ferrand

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes. 2. Compositions of minerals and melts. Contrib Mineral Petrol 128:176–196. doi:10.1007/s004100050302

    Article  Google Scholar 

  • Nabelek PI, Glascock MD (1995) Rare earth element-depleted leucogranites Black Hills, South Dakota: a consequence of disequilibrium melting of monazite-bearing schists. J Petrol 36:1055–1071

    Google Scholar 

  • Nash WP, Crecraft HR (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322. doi:10.1016/0016-7037(85)90231-5

    Article  Google Scholar 

  • Parrish RR (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1431–1450

    Google Scholar 

  • Patino-Douce AE (1996) Effect of pressure and H2O content on the compositions of primary crustal melts. Trans R Soc Edinb Earth Sci 87:11–21

    Google Scholar 

  • Patino-Douce AE, Beard JS (1995) Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 Kbar. J Petrol 36:707–738

    Google Scholar 

  • Patino-Douce AE, Harris N (1998) Experimental constrains on Himalayan anatexis. J Petrol 39:689–710. doi:10.1093/petrology/39.4.689

    Article  Google Scholar 

  • Patino-Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218. doi:10.1007/BF00310707

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Meal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144. doi:10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Pickering JM, Johnston AD (1998) Fluid-absent melting behaviour of a two-mica metapelite: experimental constraints on the origin of black hills granite. J Petrol 39(10):1787–1804. doi:10.1093/petrology/39.10.1787

    Article  Google Scholar 

  • Rollinson H (1993) Using geochemical data: evaluation, presentation, interpretation. Edinburgh Gate, Edinburgh

    Google Scholar 

  • Rozendaal A, Gresse PG, Scheepers R, Le Roux JP (1999) Neoproterozoic to early Cambrian crustal evolution of the Pan-African Saldania Belt, South Africa. Precambrian Res 97:303–323. doi:10.1016/S0301-9268(99)00036-4

    Article  Google Scholar 

  • Rubatto D, Hermann J (2007) Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chem Geol 241:38–61. doi:10.1016/j.chemgeo.2007.01.027

    Article  Google Scholar 

  • Sawyer EW (1991) Disequilibrium melting and the rate of melt residuum separation during migmatization of mafic rocks from the Grenville Front, Quebec. J Petrol 32:701–738

    Google Scholar 

  • Scheepers R (1995) Geology, geochemistry and petrogenesis of Late Precambrian S-, I- and A-type granitoids in the Saldania belt, Western Cape Province South Africa. J Afr Earth Sci 21:35–58. doi:10.1016/0899-5362(95)00087-A

    Article  Google Scholar 

  • Scheepers R, Armstrong RA (2002) New U-Pb SHRIMP zircon ages of the Cape Granite Suite: implications for the magmatic evolution of the Saldania Belt. S Afr J Geol 105:241–256. doi:10.2113/1050241

    Article  Google Scholar 

  • Schoch AE (1975) The darling granite batholith. Ann Univ Stell A1:1–104

    Google Scholar 

  • Schoch AE, Leterrier J, De la Roche H (1977) Major element geochemical trends in the Cape granites. Trans Geol Soc S Afr 80:197–209

    Google Scholar 

  • Sisson TW, Bacon CR (1992) Garnet high-silica rhyolite trace-element partition-coefficients measured by ion microprobe. Geochim Cosmochim Acta 56:2133–2136. doi:10.1016/0016-7037(92)90336-H

    Article  Google Scholar 

  • Solgadi F, Moyen J-F, Vanderhaeghe O, Sawyer EW, Reisberg L (2007) The role of crustal anatexis and mantle derived magmas in the genesis of syn-orogenic hercynian granites of the Livradois Area, French Massif Central. Can Mineral 45:581–606. doi:10.2113/gscanmin.45.3.581

    Article  Google Scholar 

  • Stevens G, Clemens JD (1993) Fluid absent melting and the roles of fluids in the lithosphere: a slanted summary? Chem Geol 108:1–17. doi:10.1016/0009-2541(93)90314-9

    Article  Google Scholar 

  • Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from primitive metasedimentary protoliths. Contrib Mineral Petrol 128:352–370. doi:10.1007/s004100050314

    Article  Google Scholar 

  • Stevens G, Villaros A, Moyen JF (2007) Selective peritectic garnet entrainment as the origin of geochemical diversity in S-type granites. Geology 35:9–12. doi:10.1130/G22959A.1

    Article  Google Scholar 

  • Streck MJ, Grunder AL (1997) Compositional gradients and gaps in high-silica rhyolites of the Rattlesnake Tuff, Oregon. J Petrol 38:133–163. doi:10.1093/petrology/38.1.133

    Article  Google Scholar 

  • Sylvester P (1998) Post-collisional strongly peraluminous granites. Lithos 45:29–44. doi:10.1016/S0024-4937(98)00024-3

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, New York

    Google Scholar 

  • Vielzeuf D, Holloway JR (1988) Experimental determination of fluid absent melting relations in the pelitic system. Contrib Mineral Petrol 98:257–276. doi:10.1007/BF00375178

    Article  Google Scholar 

  • Vielzeuf D, Montel JM (1994) Partial melting of Metagreywackes. 1. Fluid-absent experiments and phase-relationships. Contrib Mineral Petrol 117:375–393. doi:10.1007/BF00307272

    Article  Google Scholar 

  • Villaros A, Stevens G, Buick IS (2009) Tracking S-type granite from source to emplacement: clues from garnet in the Cape Granite Suite. Lithos (in press)

  • Villaseca C, Orejana D, Paterson BA (2007) Zr–LREE rich minerals in residual peraluminous granulites, another factor in the origin of low Zr–LREE granitic melts? Lithos 96:375–386. doi:10.1016/j.lithos.2006.11.002

    Article  Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Trans R Soc Edinb Earth Sci 87:43–56

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304. doi:10.1016/0012-821X(83)90211-X

    Article  Google Scholar 

  • Watt GR, Harley SL (1993) Accessory mineral phase controls on the geochemistry of crustal melts and restites produced during water-undersaturated partial melting. Contrib Mineral Petrol 114:550–566. doi:10.1007/BF00321759

    Article  Google Scholar 

  • White AJR, Chappell BW (1977) Ultrametamorphism and granitoid genesis. Tectonophysics 43:7–22. doi:10.1016/0040-1951(77)90003-8

    Article  Google Scholar 

  • Williamson BJ, Shaw A, Downes H, Thirlwall MF (1996) Geochemical constraints on the genesis of hercynian two-mica leucogranites from the Massif Central, France. Chem Geol 127:25–42. doi:10.1016/0009-2541(95)00105-0

    Article  Google Scholar 

  • Williamson BJ, Downes H, Thirlwall MF, Beard A (1997) Geochemical constraints on restite composition and unmixing in the Velay anatectic granite, French Massif Central. Lithos 40:295–319. doi:10.1016/S0024-4937(97)00033-9

    Article  Google Scholar 

Download references

Acknowledgments

The Authors want to thank J. Beard and an anonymous reviewer for their helpful comments that helped improving largely this paper. This work forms part of a PhD study by A. V. A. V. gratefully acknowledges an NRF PhD Bursary and support for the study via National Research Foundation grant funding to G. S. I. S. B. acknowledges support from an Australian Research Council Australian Professorial Fellowship and Discovery Grant No. DP0342473.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Villaros.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaros, A., Stevens, G., Moyen, JF. et al. The trace element compositions of S-type granites: evidence for disequilibrium melting and accessory phase entrainment in the source. Contrib Mineral Petrol 158, 543–561 (2009). https://doi.org/10.1007/s00410-009-0396-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0396-3

Keywords

Navigation