Skip to main content

Advertisement

Log in

Differentiation and crystallization conditions of basalts from the Kerguelen large igneous province: an experimental study

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Phase relations of basalts from the Kerguelen large igneous province have been investigated experimentally to understand the effect of temperature, fO2, and fugacity of volatiles (e.g., H2O and CO2) on the differentiation path of LIP basalts. The starting rock samples were a tholeiitic basalt from the Northern Kerguelen Plateau (ODP Leg 183 Site 1140) and mildly alkalic basalt evolved from the Kerguelen Archipelago (Mt. Crozier on the Courbet Peninsula), representing different differentiation stages of basalts related to the Kerguelen mantle plume. The influence of temperature, water and oxygen fugacity on phase stability and composition was investigated at 500 MPa and all experiments were fluid-saturated. Crystallization experiments were performed at temperatures between 900 and 1,160°C under oxidizing (log fO2 ~ ΔQFM + 4) and reducing conditions (log fO2 ~ QFM) in an internally heated gas-pressure vessel equipped with a rapid quench device and a Pt-Membrane for monitoring the fH2. In all experiments, a significant influence of the fO2 on the composition and stability of the Mg/Fe-bearing mineral phases could be observed. Under reducing conditions, the residual melts follow a tholeiitic differentiation trend. In contrast, melts have high Mg# [Mg2+/(Mg2+ + Fe2+)] and follow a calk-alkalic differentiation trend at oxidizing conditions. The comparison of the natural phenocryst assemblages with the experimental products allows us to constrain the differentiation and pre-eruptive conditions of these magmas. The pre-eruptive temperature of the alkalic basalt was about 950–1,050°C. The water content of the melt was below 2.5 wt% H2O and strongly oxidizing conditions (log fO2 ~ ΔQFM + 2) were prevailing in the magma chamber prior to eruption. The temperature of the tholeiitic melt was above 1,060°C, with a water content below 2 wt% H2O and a log fO2 ~ ΔQFM + 1. Early fractionation of clinopyroxene is a crucial step resulting in the generation of silica-poor and alkali-rich residual melts (e.g., alkali basalt). The enrichment of alkalis in residual melts is enhanced at high fO2 and low aH2O.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ablay GJ, Carroll MR, Palmer MR, Marti J, Sparks RSJ (1998) Basanite–phonolite lineages of the Teide Pico Viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39:905–936

    Article  Google Scholar 

  • Albarède F (1995) Introduction to geochemical modeling. Cambridge University Press, Cambridge, p 543

    Google Scholar 

  • Ariskin AA (1999) Phase equlilibria modeling in igneous petrology: use of COMAGMAT model for simulating fractionation of ferro-basaltic magmas and the genesis of high-alumina basalt. J Volcanol Geotherm Res 90:115–162

    Article  Google Scholar 

  • Ballhaus C (1993) Redox states of lithospheric and asthenospheric upper mantle. Contrib Mineral Petrol 114:331–348

    Article  Google Scholar 

  • Berndt J (2002) Differentiation of MOR Basalt at 200 MPa: experimental techniques and influence of H2O and fO2 on phase relations and liquid line of descent, Thesis. Universität Hannover

  • Berndt J, Liebske C, Holtz F, Freise M, Nowak M, Ziegenbein D, Hurkuck W, Koepke J (2002) A combined rapid-quench and Shaw membrane setup for internally heated pressure vessels: description and application for water solubility in basaltic melts. Am Mineral 87:1717–1726

    Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167

    Article  Google Scholar 

  • Bohlen SR, Boettcher AL, Wall VJ (1982) The system albite–H2O–CO2—a model for melting and activities of water at high-pressures. Am Mineral 67:451–462

    Google Scholar 

  • Borisova AY, Nikogosian IK, Scoates JS, Weis D, Damasceno D, Shimizu N, Touret JLR (2002) Melt, fluid and crystal inclusions in olivine phenocrysts from Kerguelen plume-derived picritic basalts: evidence for interaction with the Kerguelen Plateau lithosphere. Chem Geol 183:195–220

    Article  Google Scholar 

  • Botcharnikov RE, Behrens H, Holtz F (2006) Solubility and speciation of C-O-H fluids in andesitic melt at T = 1,100–1,300°C and P = 200 and 500 MPa. Chem Geol 229:125–143

    Article  Google Scholar 

  • Burnham WC (1979) The importance of volatile constituents. In: Yoder HS Jr (ed) The evolution of the igneous rocks. Princeton University Press, Princeton, pp 439–482

    Google Scholar 

  • Carmichael SE, Turner FJ, Verhoogen J (1974) Igneous Petrology. McGraw-Hill, New York, p 739

    Google Scholar 

  • Caroff M, Ambrics C, Maury RC, Cotten J (1997) From alkali basalt to phonolite in hand-size samples: vapor-differentiation effects in the Bouzentès lava flow. J Volcanol Geotherm Res 79:47–61

    Article  Google Scholar 

  • Coffin MF, Pringle MS, Duncan RA, Gladczenko TP, Storey M, Müller RD, Gahagan LA (2002) Kerguelen hotspot magma output since 130 Ma. J Petrol 43:1121–1139

    Article  Google Scholar 

  • Costa F, Scaillet B, Pichavant M (2004) Petrological and experimental constraints on the pre-eruption conditions of holocene dacite from Volcán San Pedro (36°S, Chilean Andes) and the importance of sulphur in silicic subduction-related magmas. J Petrol 45:855–881

    Article  Google Scholar 

  • Courtillot V (1999) Evolutionary catastrophes: the science of mass extinction. Cambridge University Press, Cambridge, p 173

    Google Scholar 

  • Dall′Agnol R, Scaillet B, Pichavant M (1999) An experimental study of a lower Proterozoic A-type granite from the eastern Amazonian craton, Brasil. J Petrol 40:1673–1698

    Article  Google Scholar 

  • Damasceno D, Scoates JS, Weis D, Frey FA, Giret A (2002) Mineral chemistry of mildly alkalic basalts from the 25 Ma Mont Crozier section, Kerguelen Archipelago: constraints on phenocryst crystallization environments. J Petrol 43:1389–1413

    Article  Google Scholar 

  • Danyushevsky LV, Sobolev AV (1996) Ferric-ferrous ratio and oxygen fugacity calculations for primitive mantle-derived melts: calibration of an empirical technique. Mineral Petrol 57:229–241

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24

    Article  Google Scholar 

  • Devine JD, Gardener JE, Brack HP, Layne GD, Rutherford MJ (1995) Comparison of microanalytical methods for estimating H2O contents of silicic volcanic glasses. Am Mineral 80:319–328

    Google Scholar 

  • Dixon-Spulber S, Rutherford MJ (1983) The origin of rhyolite and plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25

    Google Scholar 

  • Dixon JE, Clague DA, Stolper EM (1991) Degassing history of water, sulfur, and carbon in submarine Lavas from Kilauea volcano, Hawaii. J Geol 99:371–394

    Article  Google Scholar 

  • Dixon JE, Leist L, Langmuir CH, Schilling J-G (2002) Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420:385–389

    Article  Google Scholar 

  • Doucet S, Weis D, Scoates JS, Nicolaysen K, Frey FA, Giret A (2002) The depleted mantle component in Kerguelen Archipelago basalts: petrogenesis of tholeiitic-transitional basalts from the Loranchet Peninsula. J Petrol 43:1341–1366

    Article  Google Scholar 

  • Doucet S, Scoates JS, Weis D, Giret A (2005) Constraining the components of the Kerguelen mantle plume: a high-precision Hf-Pb-Sr-Nd isotopic study of picrites and high-MgO basalts from the Kerguelen Archipelago. Geochem Geophys Geosys. doi:10.1029/2002GC000482

  • Duncan RA (2002) A time frame for construction of the Kerguelen Plateau and Broken Ridge. J Petrol 43:1109–1119

    Article  Google Scholar 

  • Ellis DJ, Thompson AB (1986) Subsolidus and partial melting reactions in the quartz-excess CaO + MgO + Al2O3 + SiO2 + H2O system under water-excess and water-deficient conditions to 10 kbar: some implications for the origin of peraluminous melts from mafic rocks. J Petrol 27:91–121

    Google Scholar 

  • Ford CE (1978) Platinum-iron alloy sample containers for melting experiments on iron bearing rocks, minerals, and related systems. Min Mag 42:271–275

    Article  Google Scholar 

  • Freise M, Holtz F, Koepke J, Scoates JS, Leyrit H (2003) Experimental constraints on the storage conditions of phonolites from the Kerguelen Archipelago. Contrib Mineral Petrol 145:659–672

    Article  Google Scholar 

  • Frey FA, Coffin MF, Wallace PJ, Weis D, Zhao X, Wise SW Jr, Wähnert V, Teagle DAH, Saccocia PJ, Reusch DN, Pringle MS, Nicolaysen K, Neal CR, Müller RD, Moore CL, Mahoney JJ, Keszthelyi L, Inokuchi H, Duncan RA, Delius H, Damuth JE, Damasceno D, Coxall HK, Borre MK, Boehm F, Barling J, Arndt NT, Antretter M (2000a) Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean. Earth Planet Sci Lett 176:73–89

    Article  Google Scholar 

  • Frey FA, Weis D, Yang HJ, Nicolaysen K, Leyrit H, Giret A (2000b) Temporal geochemical trends in Kerguelen Archipelago basalts: evidence for decreasing magma supply from the Kerguelen Plume. Chem Geol 164:61–80

    Article  Google Scholar 

  • Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365:332–335

    Article  Google Scholar 

  • Gaillard F, Scaillet B, Pichavant M (2002) Kinetics of iron oxydation-reduction in hydrous silicic melts. Am Mineral 87:829–837

    Google Scholar 

  • Gardien V, Thompson AB, Grujic G, Ulmer P (1995) Experimental melting of biotite + plagioclase + quartz + muscovite assemblages and implications for crustal melting. J Geophys Res 100:15581–15591

    Article  Google Scholar 

  • Gautier I, Weis D, Mennessier JP, Vidal P, Giret A, Loubet M (1990) Petrology and geochemistry of the Kerguelen Archipelago basalts: evolution of the mantle sources from ridge to intraplate position. Earth Planet Sci Lett 100:59–76

    Article  Google Scholar 

  • Ghiorso MS (1997) Thermodynamic models of igneous processes. Ann Rev Earth Planet Sci 25:221–241

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes.4. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Grove TL, Bryan WB (1983) Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contrib Mineral Petrol 84:293–309

    Article  Google Scholar 

  • Grove TL, Elkins-Tanton LT, Parman SW, Chatterjee N, Müntener O, Gaetani GA (2003) Fractional crystallisation and mantle-melting controls on calc-alkaline differentiation trends. Contrib Mineral Petrol 145:515–533

    Article  Google Scholar 

  • Helz RT (1973) Phase relations of basalt in their melting ranges at \(P_{{{\text{H}}_{{\text{2}}} {\text{O}}}} = 5\,{\text{kb}}\) as a function of oxygen fugacity. J Petrol 14:249–302

    Google Scholar 

  • Helz RT (1976) Phase relations of basalt in their melting ranges at \(P_{{{\text{H}}_{{\text{2}}} {\text{O}}}} = 5\,{\text{kb}}\). Part II: melt compositions. J Petrol 17:139–193

    Google Scholar 

  • Holloway JR, Burnham CW (1972) Melting relations of basalt with equilibrium water pressure less than total pressure. J Petrol 13:1–30

    Google Scholar 

  • Holtz F, Behrens H, Dingwell DB, Johannes W (1995) H2O solubility in haplogranitic melts; compositional, pressure, and temperature dependence. Am Mineral 80:94–108

    Google Scholar 

  • Hoover JD, Irvine TN (1977) Liquidus relations and Mg–Fe partitioning on part of the system Mg2SiO4–Fe2SiO4–CaMgSi2O6–CaFeSi2O6–KAlSi3O8–SiO2, vol 77. Carnegie Institute of Washington Yearbook, pp 774–784

  • Hunt JB, Hill PG (2001) Tephrological implications of beam size-sample-size effects in electron microprobe analysis of glass shards. J Quat Sci 16:105–117

    Article  Google Scholar 

  • Ingle S, Weis D, Doucet S, Mattielli N (2003) Hf isotope constraints on mantle sources and shallow-level contaminants during Kerguelen hot spot activity since ~120 Ma. Geochem Geophys Geosys. doi:10.1029/2004GC000806

  • Johnson MC, Anderson AT Jr, Rutherford MJ (1994) Pre-eruptive volatile contents of magmas. In: Carroll MR, Holloway JR (eds) Volatiles in Magmas, vol 30. Mineralogical Society of America, Washington, DC, pp 281–330

    Google Scholar 

  • Klimm K, Holtz F, Johannes W, King PL (2003) Fractionation of metaluminous A-type granites: an experimental study of the Wangrah Suite, Lachlan Fold Belt, Australia. Precam Res 124:327–341

    Article  Google Scholar 

  • Koepke J (1997) Analyse von wasserhaltigen silikatischen Gläsern mit der Mikrosonde: Wassergehalte und Alkaliverluste. Beih J Mineral 9:200

    Google Scholar 

  • Koepke J, Johannes W, Becker A (1996) Determination of crystal/melt fractions with the help of BSE-pictures and image analysis. Terra Nova 8:36

    Google Scholar 

  • Korenaga J (2005) Why did not the Ontong Java Plateau form subaerially. Earth Planet Sci Lett 234:385–399

    Article  Google Scholar 

  • Kress VC, Carmichael SE (1991) The compressibility of silicate liquidus containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Rock NMS, Schumacher JS, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Youzhi G (1997) Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on new minerals and mineral names. Eur J Min 9:623–651

    Google Scholar 

  • Martel C, Pichavant M, Bourdier JL, Traineau H, Holtz F, Scaillet B (1998) Magma storage conditions and control of eruption regime in silicic volcanoes; experimental evidence from Mt. Pelee. Earth Planet Sci Lett 156:89–99

    Article  Google Scholar 

  • Miyashiro A (1974) Volcanic rock series in island arcs and active continental margins. Am J Sci 274:321–355

    Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Am Mineral 73:1123–1133

    Google Scholar 

  • Nafziger RH, Ulmer GC, Woermann E (1971) Gaseous buffering at one atmosphere. In: Ulmer GC (ed) Research techniques for high pressure and high temperature. Springer, Berlin

    Google Scholar 

  • Naumann TR, Geist DJ (1999) Generation of alkalic basalt by crystal fractionation of tholeiitic magma. Geology 27:423–426

    Article  Google Scholar 

  • Nicolaysen K, Frey FA, Hodges KV, Weis D, Giret A (2000) 40Ar/39Ar geochronology of flood basalts from the Kerguelen Archipelago, southern Indian Ocean: implications for Cenozonic eruption rates of the Kerguelen plume. Earth Planet Sci Lett 174:313–328

    Article  Google Scholar 

  • Ohlhorst S, Behrens H, Holtz F (2001) Compositional effect of molar absorptivities of near-infrared OH- and H2O bands in rhyolitic to basaltic glasses. Chem Geol 174:5–20

    Article  Google Scholar 

  • Pitzer KS, Sterner SM (1994) Equation of state valid continuously from zero to extreme pressures for H2O and CO2. J Chem Phys 102:3111–3116

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibria, 0–30 kbar. Contrib Mineral Petrol 123:92–108

    Article  Google Scholar 

  • Ratajeski K, Sisson TW (1999) Loss of iron to gold capsules in rock-melting experiments. Am Mineral 84:1521–1527

    Google Scholar 

  • Robie RA, Hemingway BS, Fischer JR (1978) Thermodynamic properties of minerals and related subtances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperature. Geol Surv Bull 1452:456

    Google Scholar 

  • Roux J, Lefèvre A (1992) A fast-quench device for internally heated pressure vessels. Eur J Min 4:279–281

    Google Scholar 

  • Ryabchikov ID, Ntaflos T, Büchl A, Solovova IP (2001) Subalkaline picrobasalts and plateau basalts from the Putorana Plateau (Siberian Continental Flood Basalt Province): 1. mineral compositions and geochemistry of major and trace elements. Geochem Int 39:415–431

    Google Scholar 

  • Ryabchikov ID, Solovova IP, Kogarko LN, Bray GP, Ntaflos T, Simakin SG (2002) Thermodynamic parameters of generation of meymechites and alkaline picrites in the Maimecha-Kotui Province: evidence from melt inclusions. Geochem Int 40:1031–1041

    Google Scholar 

  • Scaillet B, McDonald R (2003) Experimental constraints on the relationships between peralkaline rhyolites of the Kenya Rift Valley. J Petrol 44:1867–1894

    Article  Google Scholar 

  • Scaillet B, Pichavant M, Roux J (1995) Experimental crystallisation of leucogranite magmas. J Petrol 36:663–705

    Google Scholar 

  • Schwab RG, Küstner D (1981) The equilibrium fugacities of important oxygen buffers in technology and petrology. Neu Jahrb Min 140:111–142

    Google Scholar 

  • Scoates JS, Cascio ML, Weis D, Lindsley D (2006) Experimental constraints on the origin and evolution of mildly alkalic basalts from the Kerguelen Archipelago, Southeast Indian Ocean. Contrib Mineral Petrol 151:582–599

    Article  Google Scholar 

  • Shaw HR, Wones DR (1964) Fugacity coefficients for hydrogen gas between 0°C and 1,000°C for pressures to 3,000 atm. Am J Sci 262:918–929

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimetal investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166

    Article  Google Scholar 

  • Thy P, Lesher CE, Fram MS (1998) Low pressure experimental constraints on the evolution of basaltic lavas from Site 917, Southeast Greenland continental margin. In: Proceedings of the Oceans Drilling Program (Scientific results), vol 121, pp 359–372

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39

    Article  Google Scholar 

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral-melt equilibra in ferro-basaltic systems. J Petrol 36:1137–1170

    Google Scholar 

  • Toplis MJ, Carroll MR (1996) Differentiation of ferro-basaltic magmas under conditions open and closed to oxygen: implications for the Skaergaard intrusion and other natural systems. J Petrol 37:837–858

    Article  Google Scholar 

  • Wallace PJ (2002) Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau (ODP Site 1140): Implications for source region compositions, magmatic processes, and plateau subsidence. J Petrol 43:1311–1326

    Article  Google Scholar 

  • Weis D, Frey FA (2002) Submarine basalts of the northern Kerguelen Plateau: interaction between the Kerguelen Plume and the southeast Indian ridge revealed at ODP Site 1140. J Petrol 43:1287–1309

    Article  Google Scholar 

  • Weis D, Bassias Y, Gautier I, Mennessier JP (1989) Dupal anomaly in existence 115 Ma ago: evidence from isotopic study of the Kerguelen Plateau (South Indian Ocean). Geochim Cosmochim Acta 53:2125–2131

    Article  Google Scholar 

  • Weis D, Frey FA, Leyrit H, Gautier I (1993) Kerguelen Archipelago revisited: geochemical and isotopic study of the Southeast Province lavas. Earth Planet Sci Lett 118:101–119

    Article  Google Scholar 

  • Weis D, Frey FA, Giret A, Cantagrel JM (1998) Geochemical characteristics of the youngest volcano (Mount Ross) in the Kerguelen Archipelago: Inferences for magma flux, lithosphere assimilation and composition of the Kerguelen plume. J Petrol 39:973–994

    Article  Google Scholar 

  • Weis D, Frey FA, Schlich R, Schaming M, Montigny R, Damasceno D, Matthielli N, Nicolaysen KE, Scoates JS (2002) Trace of the Kerguelen mantle plume: evidence from seamounts between the Kerguelen Archipelago and Heard Island, Indian Ocean. Geochem Geophys Geosys. doi:10.1029/2001GC000251

  • Yang HJ, Frey FA, Weis D, Giret A, Pyle D, Michon G (1998) Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: implications for the Kerguelen plume. J Petrol 39:711–748

    Article  Google Scholar 

Download references

Acknowledgments

This research was carried out in the framework of the ODP “Schwerpunktprogramm” supported by the German Science Foundation (DFG, Ho1337). The ODP is sponsored by the US National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc. Sample 35R2 was collected during ODP Leg 183 and sample OB93-190 was collected on the Kerguelen Archipelago by D. Weis and D. Damasceno. We thank Dominique Weis for help in selecting the appropriate samples for the experimental study. We thank O. Diedrich for preparing the samples and W. Hurkuck and B. Aichinger for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Freise.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 885 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freise, M., Holtz, F., Nowak, M. et al. Differentiation and crystallization conditions of basalts from the Kerguelen large igneous province: an experimental study. Contrib Mineral Petrol 158, 505–527 (2009). https://doi.org/10.1007/s00410-009-0394-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0394-5

Keywords

Navigation