Skip to main content
Log in

La–SiO2 and Yb–SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Analytical expressions for the variation in D La and D Yb with increasing liquid SiO2 for olivine, plagioclase, augite, hornblende, orthopyroxene, magnetite and ilmenite (Brophy in Contrib Mineral Petrol 2008, online first) have been combined with numerical models of hydrous partial melting, of mid-ocean ridge (MOR) cumulate gabbro melting, and fractional crystallization of slightly hydrous mid-ocean ridge basalt (MORB) magma to assess a melting versus fractionation origin for oceanic plagiogranite. For felsic magmas (>63 wt.% SiO2) the modeling predicts the following. MOR cumulate gabbro melting should yield constant or decreasing La and constant Yb abundances with increasing liquid SiO2. The overall abundances should be similar to those in associated mafic magmas. MORB fractional crystallization should yield steadily increasing La and Yb abundances with increasing SiO2 with overall abundances significantly higher than those in associated mafic magmas. Application to natural occurrences of oceanic plagiogranite indicate that both MOR cumulate gabbro melting and MORB fractionation are responsible. Application of the model results to Icelandic rhyolites strongly support a fractional crystallization rather than a crustal melting origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aldiss DT (1981) Oceanic plagiogranites from the ocean crusta and ophiolites. Nature 289:577–578. doi:10.1038/289577a0

    Article  Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petrol 98:224–256. doi:10.1007/BF00402114

    Article  Google Scholar 

  • Beccaluva L, Chinchilla-Chaves AL, Coltorti M, Giunta G, Siena F, Vaccaro C (1999) Petrological and structural significance of the Santa Elena-Nicoya ophiolitic complex in Costa Rica and geodynamic implications. Eur J Min 11:1091–1107

    Google Scholar 

  • Berndt J, Koepke J, Holtz F (2005) An experimental investigation of the influence of water and oxygen fugacity on differentiation of MORB at 200 MPa. J Petrol 46:135–167. doi:10.1093/petrology/egh066

    Article  Google Scholar 

  • Borsi L, Scharer U, Gaggero L, Crispini L (1996) Age, origin and geodynamic significance of plagiogranites in lherzolites and gabbros of the Piedmont-Ligurian ocean basin. Earth Planet Sci Lett 140:227–241. doi:10.1016/0012-821X(96)00034-9

    Article  Google Scholar 

  • Brophy JG (2008) A study of rare earth element (REE)–SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib Mineral Petrol (currently available via online first)

  • Carmichael ISE (1964) Petrology of Thingmuli, a tertiary volcano in eastern Iceland. J Petrol 5:435–460

    Google Scholar 

  • Carmichael ISE, Turner FJ, Verhoogen J (1974) Igneous petrology. McGraw-Hill, New York, p 739

    Google Scholar 

  • Casey JF, Elthon DL, Siroky FS, Karson JA, Sullivan J (1985) Geochemical and geological evidence bearing on the origin of the Bay of Islands and coastal complex ophiolites of western Newfoundland. Tectonophysics 116:1–40. doi:10.1016/0040-1951(85)90220-3

    Article  Google Scholar 

  • Christie DM, Carmichael ISE, Langmuir CH (1984) Oxidation states of mid-ocean ridge basalt glasses. Earth Planet Sci Lett 79:397–411

    Article  Google Scholar 

  • Coleman RG, Donato MM (1979) Oceanic oceanic plagiogranite revisited. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 149–167

    Google Scholar 

  • Dalpe C, Baker DR (2000) Experimental investigation of large ion lithophile element, high field strength element, and rare earth element partitioning between calcic amphibole and basaltic melts; the effects of pressure and oxygen fugacity. Contrib Mineral Petrol 140:233–250. doi:10.1007/s004100000181

    Article  Google Scholar 

  • Dixon-Spulber S, Rutherford MJ (1983) The origin of rhyolite and oceanic plagiogranite in oceanic crust: an experimental study. J Petrol 24:1–25

    Google Scholar 

  • Ewart A (1982) The mineralogy and petrology of tertiary-recent orogenic volcanic rocks: with special reference to the andesitic basaltic compositional range. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, New York, pp 25–95

    Google Scholar 

  • Flagler PA, Spray JG (1991) Generation of oceanic plagiogranite by amphibolite anatexis in oceanic shear zones. Geology 19:70–73. doi:10.1130/0091-7613(1991)019<0070:GOPBAA>2.3.CO;2

    Article  Google Scholar 

  • Floyd PA, Yaliniz MK, Concuoglu MC (1998) Geochemistry and petrogenesis of intrusive and extrusive ophiolitic oceanic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos 42:225–241. doi:10.1016/S0024-4937(97)00044-3

    Article  Google Scholar 

  • Furman T, Frey FA, Meyer PS (1992) Petrogenesis of evolved basalts and rhyolites at Austurhorn, Southeastern Iceland: the role of fractional crystallization. J Petrol 33:1405–1445

    Google Scholar 

  • Furnes H, Sturt BA, Griffin WL (1980) Trace element geochemistry of metabasalts from the Karmoy ophiolite, southwest Norwegian Caledonides. Earth Planet Sci Lett 50:75–91. doi:10.1016/0012-821X(80)90120-X

    Article  Google Scholar 

  • Gerlach DC, Ave Lallemant HG, Leeman WP (1981) An island arc origin for the Canyon Mountain ophiolite complex, Eastern Oregon, USA. Earth Planet Sci Lett 53:255–265. doi:10.1016/0012-821X(81)90158-8

    Article  Google Scholar 

  • Gillis K, Coogan LA (2002) Anatectic migmatites from the roof of an ocean ridge magma chamber. J Petrol 43:2075–2095. doi:10.1093/petrology/43.11.2075

    Article  Google Scholar 

  • Gunnarson B, Masrh BD, Taylor HP (1998) Generation of Icelanic rhyolites: silicic lavas from the Torfajokull central volcano. J Volcanol Geotherm Res 83:1–45. doi:10.1016/S0377-0273(98)00017-1

    Article  Google Scholar 

  • Jenner GA, Dunning GR, Malpas J, Brown M, Brace T (1991) Bay of Islands and little Port complexes revisited: age, geochemical and isotopic evidence confirm suprasubduction-zone origin. Can J Earth Sci 28:1635–1652

    Google Scholar 

  • Jonasson K, Holm PM, Pederson AK (1992) Petrogenesis of silicic rocks from the Kroksfjordur central volcano, NW Iceland. J Petrol 33:1345–1369

    Google Scholar 

  • Juster TC, Grove TL, Perfit MR (1989) Experimental constrains on the generation of Fe–Ti basalts, andesites and rhyodacites at the Galapagos spreading center, 85°W and 95°W. J Geophys Res 94:9251–9274. doi:10.1029/JB094iB07p09251

    Article  Google Scholar 

  • Klein M, Stosch HG, Seck HA (1997) Partitioning of high field strength and rare earth elements between amphibole and quartz-dioritic to tonalitic melts: an experimental system. Chem Geol 138:257–271. doi:10.1016/S0009-2541(97)00019-3

    Article  Google Scholar 

  • Koepke J, Feig ST, Snow J, Freise M (2004) Petrogenesis of oceanic oceanic plagiogranites by partial melting of gabbros: an experimental study. Contrib Mineral Petrol 146:414–432. doi:10.1007/s00410-003-0511-9

    Article  Google Scholar 

  • Koepke J, Berndt J, Feig ST, Holtz F (2007) The formation of SiO2-rich melts within the deep oceanic crystal by hydrous partial melting of gabbros. Contrib Mineral Petrol 153:67–84. doi:10.1007/s00410-006-0135-y

    Article  Google Scholar 

  • Le Roux P, Shirey SB, Hairi EH, Perfit MR, Bender JF (2006) The effects of variable sources, processes and contaminants on the composition of northern EPR MORB (8–10°N and 12–14°N): evidence from volatiles (H2O, CO2, S) and halogens (F, Cl). Earth Planet Sci Lett 251:209–231. doi:10.1016/j.epsl.2006.09.012

    Article  Google Scholar 

  • Lippard SJ, Shelton AW, Gass IG (1986) The ophiolite of northern Oman. In: Geological Society of London Memoir, vol 11. Blackwell, Oxford, p 178

  • Luhr JF, Carmichael ISE (1980) The colima volcanic complex, Mexico. Contrib Mineral Petrol 71:343–372. doi:10.1007/BF00374707

    Article  Google Scholar 

  • Luhr JF, Carmichael ISE, Varekamp JC (1984) The 1982 eruptions of El Chichon Volcano, Chiapas, Mexico: mineralogy and petrology of the anhydrite bearing pumices. J Volcanol Geotherm Res 23:69–108. doi:10.1016/0377-0273(84)90057-X

    Article  Google Scholar 

  • Macdonald R, Sparks RSJ, Sigurdsson H, Matttey DP, McGarvie DW, Srmit RL (1987) The 1875 eruption of Askja volcano, Iceland: combined fractional crystallization and selective contamination in the generation of rhyolitic magma. Mineral Mag 51:183–202. doi:10.1180/minmag.1987.051.360.01

    Article  Google Scholar 

  • MacDonald R, McGarvie DW, Pinkerton H, Smith RL, Palacz ZA (1990) Petrogenetic evolution of the Torfajokull volcanic complex, Iceland. Relation between the magma types. J Petrol 31:461–481

    Google Scholar 

  • Malpas J (1979) Two contrasting trondhjemite associations from transported ophiolites in Western Newfoundland: initial report. In: Barker F (ed) Trondhhemites, dacites and related rocks. Elsevier, Amsterdam, pp 465–487

    Google Scholar 

  • Marsh BD (1996) Solidification fronts and magmatic evolution. Min Mag (Lond) 60:5–40. doi:10.1180/minmag.1996.060.398.03

    Article  Google Scholar 

  • Martin E, Sigmarsson O (2007) Crustal thermal state and the origin of silicic magma in Iceland: the case of Torfajokull, Ljosufjoll and Snaefellsjokull volcanoes. Contrib Mineral Petrol 153:593–605. doi:10.1007/s00410-006-0165-5

    Article  Google Scholar 

  • Nakajima K, Arima M (1998) Melting experiments on hydrous low-K tholeiite: implications for the genesis of tonalitic crust in the Izu-Bonin Mariana arc. Isl Arc 7:359–373. doi:10.1111/j.1440-1738.1998.00195.x

    Article  Google Scholar 

  • Nicholson H, Condomines M, Fitton JG, Fallick AE, Gronvold K, Rogers G (1991) Geochemical and isotopic evidence for crustal assimilation beneath Krafla, Iceland. J Petrol 32:1005–1020

    Google Scholar 

  • Niu Y, Gilmore T, Mackie S, Greig A, Basch W (2002) Mineral chemistry, whole-rock compositions and petrogenesis of Leg 176 gabbros: data and discussion. In: Natland JH, Dick HJB, Miller DJ, Von herzen RP (eds) Proceedings of the the ODP, Science Research, vol 176. Ocean Drilling Program, College Station, pp 1–60

  • O’Nions RK, Gronvold K (1973) Petrogenic relationship of acid and basic rocks in Iceland and rare earth elements in late postglacial volcanics. Earth Planet Sci Lett 19:397–409. doi:10.1016/0012-821X(73)90182-9

    Article  Google Scholar 

  • Oskarsson N, Sigvaldason GE, Steinthorsson S (1982) A dynamic model of rift zone petrogenesis and the regional petrology of Iceland. J Petrol 23:28–74

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocend calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81. doi:10.1007/BF00384745

    Article  Google Scholar 

  • Pederson RB, Malpas J (1984) the origin of oceanic oceanic plagiogranites from the Karmoy ophiolite, western Norwary. Contrib Mineral Petrol 88:36–52. doi:10.1007/BF00371410

    Article  Google Scholar 

  • Saunders AD, Tarney J, Stern CR, Dalziel IWD (1979) Geochemistry of Mesozoic marginal basin floor igneous rocks from southern Chile. Part I. Geol Soc Am Bull 90:237–258. doi:10.1130/0016-7606(1979)90<237:GOMMBF>2.0.CO;2

    Article  Google Scholar 

  • Sigvaldason GE (1974) The petrology of Hekla and the origin of silicic rocks in Iceland. Soc Sci Islandica 5:1–44

    Google Scholar 

  • Siroky FX, Elthon DL, Casey JF, Butler JC (1985) Major element variations in basalts and diabases from the North Arm Mountain Massif, Bay of Islands ophiolite: implications for magma chamber processes at mid-ocean ridges. Tectonophysics 116:41–61. doi:10.1016/0040-1951(85)90221-5

    Article  Google Scholar 

  • Sisson TW (1991) Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim Cosmochim Acta 56:2133–2136. doi:10.1016/0016-7037(92)90336-H

    Article  Google Scholar 

  • Sisson TW (1994) Hornblende-melt trace element partitioning measured by ion microprobe. Chem Geol 117:331–344. doi:10.1016/0009-2541(94)90135-X

    Article  Google Scholar 

  • Spray JG, Dunning GR (1991) A U/Pb age for the Shetland Islands oceanic fragment, Scottish Caledonides: evidence from anatectic oceanic plagiogranites in “layer 3” shear zones. Geol Mag 128:667–671

    Article  Google Scholar 

  • Stakes DS, Taylor HP (2003) Oxygen isotope and chemical studies on the origin of large oceanic plagiogranite bodies in northern Oman, and their relationship to the overlying massive sulfide deposits. In: Dilek Y, Robinson PT (eds) Ophiolites in earth history. Geol Soc Spec Pub 218:315–351

  • Thy P, Lofgren GE (1994) Experimental constrains on the low pressure evolution of transitional and mildly alkalic basalts: the effect of Fe–Ti oxide minerals and the origin of basaltic andesites. Contrib Mineral Petrol 116:340–351. doi:10.1007/BF00306502

    Article  Google Scholar 

  • Wood DA (1979) Major and trace element variations in the tertiary lavas of eastern Iceland and their significance with respect to the Iceland geochemical anomaly. J Petrol 19:393–436

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Gerald Brophy.

Additional information

Communicated by T. L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brophy, J.G. La–SiO2 and Yb–SiO2 systematics in mid-ocean ridge magmas: implications for the origin of oceanic plagiogranite. Contrib Mineral Petrol 158, 99–111 (2009). https://doi.org/10.1007/s00410-008-0372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0372-3

Keywords

Navigation