Skip to main content
Log in

A mafic-ultramafic cumulate sequence derived from boninite-type melts (Niagara Icefalls, northern Victoria Land, Antarctica)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The layered sequence from Niagara Icefalls (northern Victoria Land, Antarctica) is related to the Cambrian-Early Ordovician Ross Orogeny. The sequence consists of dunites, harzburgites, orthopyroxenites, melagabbronorites and gabbronorites of cumulus origin. The Mg# of olivine, spinel, orthopyroxene and clinopyroxene from these rocks yields positive correlations, thus indicating formation from melts that mainly evolved through fractional crystallisation. The following fractionation sequence was identified: olivine (up to 94 mol% forsterite) + Cr-rich spinel → olivine + orthopyroxene ± spinel → orthopyroxene → orthopyroxene + anorthite-rich plagioclase ± clinopyroxene. Clinopyroxenes retain the peculiar trace element signature of boninite melts, such as extremely low concentrations of HREE and HFSE, and LILE enrichment over REE and HFSE. U–Pb isotope data on zircons separated from a gabbronorite have allowed us to constrain the age of emplacement of the Niagara Icefalls sequence at ∼514 Ma. The occurrence of inherited zircons dated at ∼538 Ma indicates that the boninitic melts experienced, at least locally, crustal contamination. The Niagara Icefalls sequence can be related to a regional scale magmatic event that affected the eastern margin of the Gondwana supercontinent in the Middle Cambrian. We propose that the formation of the sequence was associated with the development of an embryonic back-arc basin in an active continental margin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • van Achterbergh E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS in the Erath Sciences. In: Sylvester P (ed) Mineralogical Association of Canada, vol. 29, pp 239–243

  • Allibone A, Wysoczansky R (2002) Initiation of magmatism during Cambrian-Ordovician Ross orogeny in southern Victoria Land, Antarctica. GSA Bull 114:1007–1018

    Google Scholar 

  • Anders E, Ebihara M (1982) Solar system abundances of the elements. Geochim Cosmochim Acta 46:2363–2380

    Article  Google Scholar 

  • Annen C, Blundy JD Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Barnes SJ (1986) The effect of trapped liquid crystallization on cumulus mineral compositions in layered intrusions. Contrib Miner Petrol 93:524–531

    Article  Google Scholar 

  • Behn MD, Kelemen PB (2006) Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J Geophys Res 111:B11207, doi: 10.1029/2006JB004327

  • Black LP, Sheraton JW (1990) The influence of precambrian source components on the U–Pb Zircon age of a palaeozoic granite from Northern Victoria Land, Antarctica. Precambrian Res 46:275–293

    Article  Google Scholar 

  • Bloomer SH, Hawkins JW (1987) Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench. Contrib Miner Petrol 97:361–377

    Article  Google Scholar 

  • Bomparola RM, Ghezzo C, Belousova E, Griffin WL, O’Reilly SY (2007) Resetting of the U–Pb Zircon System in Cambro-ordovician intrusives of the deep freeze range, Northern Victoria Land, Antarctica. J Petrol 48:327–364

    Article  Google Scholar 

  • Castelli D, Oggiano G, Talarico F, Belluso E, Colombo F (2003) Mineral chemistry and petrology of the Wilson Terrane metamorphics from Retreat Hills to Lady Newnes Bay, Northern Victoria Land, Antarctica. Geol Jb B85:135–171

    Google Scholar 

  • Cawthorn GR (1996) Models for incompatible trace-element abundances in cumulus minerals and their application to plagioclase and pyroxenes in the Bushveld complex. Contrib Miner Petrol 123:109–115

    Google Scholar 

  • Crawford AJ (1980) A clinoenstatite-bearing cumulate Olivine Pyroxenite from Howqua, Victoria. Contrib Miner Petrol 75:353–367

    Article  Google Scholar 

  • Crawford AJ, Berry RF (1992) Tectonic implications of Late Proterozoic-Early Palaeozoic igneous rock association in western Tasmania. Tectonophysics 214:37–56

    Article  Google Scholar 

  • Di Vincenzo G, Rocchi S (1999) Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: the Early Paleozoic Terra Nova Intrusive Complex, Antarctica. Contrib Mineral Petrol 137:15–35

    Article  Google Scholar 

  • Encarnaciòn J, Grunow A (1996) Changing magmatic and tectonic style along the paleo Pacific margin of Gongwana and the onset of early Paleozoic magmatism in Antarctica. Tectonics 15:1325–1341

    Article  Google Scholar 

  • Estrada S, Jordan H (2003) Early Paleozoic island arc volcanism in the Bowers terrane of Northern Victoria Land, Antarctica. Geol J B95:183–207

    Google Scholar 

  • Falloon TJ, Crawford AJ (1991) The petrogenesis of high-calcium boninite lavas dredged from the northern Tonga ridge. Earth Planet Sci Lett 102:375–394

    Article  Google Scholar 

  • Federico L, Capponi G, Crispini L (2006) The Ross orogeny of the transantarctic mountains: a northern Victoria Land perspective. Int J Earth Sci 95(5):759–770

    Article  Google Scholar 

  • Foden J, Elburg MA, Dougherty-Page J, Burtt A (2006) The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and Implications for Gondwana assembly. J Geol 114:189–210

    Article  Google Scholar 

  • Foster DA, Gray DR, Spaggiari C (2005) Timing of subduction and exhumation along the Cambrian East Gondwana margin, and the formation of Paleozoic backarc basins. GSA Bull 117:105–116

    Article  Google Scholar 

  • Green TH (1994) Experimental studies of trace-element partitioning applicable to igneous petrogenesis, Sedona 16 years later. Chem Geol 117:1–36

    Article  Google Scholar 

  • Greene AR, DeBari SM, Kelemen PB, Blusztajn J, Clift PD (2006) A detailed geochemical study of island arc crust: the Talkeetna Arc Section, South-Central Alaska. J Petrol 47:1051–1093

    Article  Google Scholar 

  • Goodge JW, Walker NW, Hansen VL (2003) Neoproterozoic-Cambrian basement-involved orogenesis within the Antarctic margin of Gondwana. Geology 21:37–40

    Article  Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Horstwood MSA, Foster GL, Parrish RR, Noble SR, Nowell GM (2003) Common-Pb corrected in situ U–Pb accessory mineral geochronology by LA-MC-ICP-MS. J Anal At Spectrom 18:837–846

    Article  Google Scholar 

  • Jagoutz O, Müntener O, Burg J-P, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan arc (NW Pakistan). Earth Planet Sci Lett 320:320–342

    Article  Google Scholar 

  • van der Laan SR, Arculus RJ, Pearce JA, Murton JB (1992) Petrography, mineral chemistry, and phase relations of the basement boninite series of Site 786, Izu–Bonin forearc. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the ocean drilling program, scientific results, ocean drilling program, College station, vol. 125, pp 171–202

  • Kelemen P, Hanghoj K, Greene AR (2003) One view on the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The Crust, Treatise on Geochemistry Elsier-Pergamon, Oxford, vol. 3, pp 593–659

  • Kemp AIS (2003) Plutonic boninite-like rocks in an anatectic setting: tectonic implications for the Delamerian orogen in southeastern Australia. Geology 31:371–374

    Article  Google Scholar 

  • Ketchum JWF, Jackson SE, Culshaw NG, Barr SM (2001) Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: evolution of a passive margin—foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Res 105:331–356

    Article  Google Scholar 

  • Kretz R (1983) Symbols for rock-forming minerals. Am Miner 68:277–279

    Google Scholar 

  • Ludwig KR (2003) ISOPLOT 3.0: a geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, Berkeley

    Google Scholar 

  • MacLachlan K, Dunning G (1998) U–Pb ages and tectonomagmatic relationships of early Ordovician low-Ti tholeiites, boninites and related plutonic rocks in central Newfoundland, Canada. Contrib Miner Petrol 133:235–258

    Article  Google Scholar 

  • Meccheri M, Pertusati PC, Tessenshon F (2003) Explanatory notes to the geological and structural map of the area between the Aviator Glacier and Victory Mountains, Northern Victoria Land, Antarctica. Geol J B85:9–33

    Google Scholar 

  • Münker C, Crawford AJ (2000) Cambrian arc evolution along the SE Gondawana active margin: a synthesis from Tasmania–New Zealand–Australia–Antarctica correlations. Tectonics 19:415–432

    Article  Google Scholar 

  • Musumeci G (1999) Magmatic belts in accretionary margins, a Key for tectonic evolution: the Tonalite Belt of North Victoria Land (East Antarctica). J Geol Soc Lond 156:177–189

    Article  Google Scholar 

  • Musumeci G, Kramers J, Pertusati PC (2000) Early Ordovician terrane accretion along the Gondwanian marign of the East Antarctic Craton: new Pb/Pb titanite ages from the Tonalite Belt, North Victoria Land, Antarctica. Terra Nova 12:35–41

    Article  Google Scholar 

  • Pearce JA, Thirlwall MF, Ingram G, Murton BJ, Arculus RJ, van der Laan SR (1992a) Isotopic evidence for the origin of boninites and related rocks drilled in the Izu-Bonin (Ogasawara) forearc, LEG125. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program, College Station, vol. 125, pp 237–261

  • Pearce JA, van der Laan SR, Arculus RJ, Murton BJ, Ishii T, Peate DW, Parkinson IJ (1992b) Boninite and harzburgite from LEG125 (Bonin–Mariana Forearc): a case study of magma genesis during the initial stages of subduction. In: Fryer P, Pearce JA, Stokking LB (eds) Proceedings of the Ocean Drilling Program, Scientific Results, Ocean Drilling Program, College Station, vol. 125, pp 623–657

  • Piercey SJ, Murphy DC, Mortensen JK, Paradis S (2001) Boninitic magmatism in a continental margin setting, Yukon-Tanana terrane, southeastern Yukon, Canada. Geology 29:731–734

    Article  Google Scholar 

  • Rocchi S, Di Vincenzo G, Ghezzo C (2004) The Terra Nova Intrusive Complex (Victoria Land, Antarctica). Terra Antartica Rep 10:1–49

    Google Scholar 

  • Sisson TW (1991) Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe. Geochim Cosmochim Acta 55:1575–1585

    Article  Google Scholar 

  • Skulski T, Minarik W, Watson EB (1994) High-pressure experimental trace-element partitioning between clinopyroxene and basaltic melts. Chem Geol 117:127–147

    Article  Google Scholar 

  • Smithies RH (2002) Archean boninite-like rocks in an intracratonic setting. Earth Planet Sci Lett 197:19–34

    Article  Google Scholar 

  • Sobolev AV, Danyushevsky LV (1994) Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas. J Petrol 35:1183–1211

    Google Scholar 

  • Squire RJ, Wilson CJL (2005) Interaction between collisional orogenesis and convergent-margin processes: evolution of the Cambrian proto-Pacific margin of East Gondwana. J Geol Soc Lond 162(5):749–761

    Google Scholar 

  • Stern RJ, Morris J, Bloomer SH, Hawkins JW (1991) The source of the subduction component in convergent margin magmas: Trace element and radiogenic isotope evidence from Eocene boninites, Mariana forearc. Geochim Cosmochim Acta 55:1467–1481

    Article  Google Scholar 

  • Tamura A, Arai S (2006) Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction setting for the Oman ophiolite mantle. Lithos 90:43–56

    Article  Google Scholar 

  • Taylor RN, Nesbitt RW, Vidal P, Harmon RS, Auvray B, Croudace IW (1994) Mineralogy, Chemistry, and Genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan. J Petrol 35:577–617

    Google Scholar 

  • Tiepolo M (1999) Determinazione sperimentale dei coefficienti di distribuzione solido/liquido in anfiboli di mantello: ruolo del controllo cristallochimico. PhD Thesis, Università di Pavia

  • Tiepolo M (2003) Pb geochronology of zircon with laser ablation - inductively coupled plasma—mass spectrometry. Chem Geol 199:159–177

    Google Scholar 

  • Tiepolo M, Bottazzi P, Palenzona M, Vannucci R (2003) A laser probe coupled with ICP-double-focusing sector-field mass spectrometer for in situ analysis of geological samples and U–Pb dating of zircon. Can Miner 41:259–272

    Article  Google Scholar 

  • Tribuzio R, Tiepolo M, Vannucci R, Bottazzi P (1999) Trace element distribution within olivine-bearing gabbros from the Northern Apennine ophiolites (Italy): evidence for post-cumulus crystallization in MOR-type gabbroic rocks. Contrib Miner Petrol 134:123–133

    Article  Google Scholar 

  • Turner NJ, Black LP, Kamperman M (1998) Dating of Neoproterozoic and Cambrian orogenies in Tasmania. Aust J Earth Sci 45:789–806

    Article  Google Scholar 

  • Vaggelli G, Olmi F, Conticelli S (1999) Quantitative electron microprobe analysis of reference silicate mineral and glass samples. Acta Vulcan 11:297–303

    Google Scholar 

  • Varne R, Brown AV (1978) The geology and petrology of the Adamsfield ultramafic complex, Tasmania. Contrib Miner Petrol 67:185–207

    Article  Google Scholar 

  • Vavra G, Gebauer D, Schmid R, Compston W (1996) Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps). Contrib Miner Petrol 122:337–358

    Article  Google Scholar 

  • Vita-Scaillet G, Lombardo B (2003) K–Ar ages of metamorphic biotites from the Retreat Hills, Meander Glaciers and the Mountaineer Range, North Victoria Land, Antarctica. Geol J B85:175–192

    Google Scholar 

  • Weaver SD, Bradshaw JD, Laird MG (1984) Geochemistry of Cambrian volcanics of the Bowers Supergroup and implications for the Early Palaeozoic tectonic evolution of northern Victoria Land, Antarctica. Earth Planet Sci Lett 68:128–140

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U–Th–Pb, Lu-Hf, trace elements ad REE analyses. Geostand Newsl 19:1–23

    Article  Google Scholar 

  • Wood BJ, Blundy JD (1997) A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib Miner Petrol 129:166–181

    Article  Google Scholar 

Download references

Acknowledgments

Claudio Ghezzo is thanked for the constant encouragement and stimulating discussions. This work was logistically and financially supported by the Italian “Programma Nazionale di Ricerche in Antartide”. In particular, we wish to acknowledge the excellent helicopter support by Helicopters NZ during field work. We are also grateful to Massimo Coltorti and Luigi Dallai for their friendly assistance in northern Victoria Land. Comments by Carsten Münker and an anonymous reviewer led to a considerable improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Tribuzio.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1 (XLS 26 kb)

Table 2 (XLS 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tribuzio, R., Tiepolo, M. & Fiameni, S. A mafic-ultramafic cumulate sequence derived from boninite-type melts (Niagara Icefalls, northern Victoria Land, Antarctica). Contrib Mineral Petrol 155, 619–633 (2008). https://doi.org/10.1007/s00410-007-0261-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0261-1

Keywords

Navigation