Skip to main content
Log in

A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony–Balaton Highland Volcanic Field (Western Hungary)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mantle xenoliths in Neogene alkali basalts of the Bakony–Balaton Highland Volcanic Field (Western Hungary) frequently have melt pockets that contain silicate minerals, glass, and often carbonate globules. Textural, geochemical and thermobarometric data indicate that the melt pockets formed at relatively high pressure through breakdown of mainly amphibole as a result of temperature increases accompanied, in most cases, by the influx of external metasomatic agents. New elemental and Sr–Nd–Pb isotope data show that in several xenoliths the external agent was either a LIL-enriched aqueous fluid or a CO2-rich fluid, whereas in other xenoliths the melt pockets were additionally enriched in LREE and sometimes HFSE, suggesting metasomatism by a silicate melt. The compositional character of the external agents might have been inherited by melting of a hydrated and probably carbonated deeper lithospheric component, which itself was metasomatized by melts with significant slab-derived components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anders E, Grevesse N (1989) Abundances of the elements: meteoric and solar. Geochim Cosmochim Acta 53:197–214

    Article  Google Scholar 

  • Ayers J (1998) Trace element modeling of aqueous fluid–peridotite interaction in the mantle wedge of subduction zones. Contrib Mineral Petrol 132:390–404

    Article  Google Scholar 

  • Baker JA, Peate DW, Waight TE, Meyzen C (2004) Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS. Chem Geol 211:275–303

    Article  Google Scholar 

  • Bali E (2004) Fluid/melt–wall rock interaction in the upper mantle beneath the central Pannonian basin. Ph.D. thesis. Dept Petrol Geochem, Eotvos University, pp 160

  • Bali E, Szabó Cs, Vaselli O, Török K (2002) Significance of silicate melt pockets in upper mantle xenoliths from the Bakony–Balaton Highland Volcanic Field, Western Hungary. Lithos 61:79–102

    Article  Google Scholar 

  • Bali E, Falus Gy, Szabó Cs, Peate DW, Hidas K, Török K, Ntaflos T (2007) Remnants of boninitic melts in the upper mantle beneath the central Pannonian Basin? Mineral Petrol 90:51–72

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40

    Article  Google Scholar 

  • Balogh K, Árva-Sós E, Pécskay Zs, Ravasz-Baranyai L (1986) K/Ar dating of Post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineral Petr Szeged 28:75–93

    Google Scholar 

  • Ban M, Witt-Eickschen G, Klein M, Seck HA (2005) The origin of glasses in hydrous mantle xenoliths from the West Eifel, Germany: incongruent break down of amphibole. Contrib Mineral Petrol 148:511–523

    Article  Google Scholar 

  • Benedek K, Pécskai Z, Szabó Cs, Jósvai J, Németh T (2003) Paleogene igneous rocks in the Zala Basin (Western Hungary): link to the paleogene magmatic activity along the Periadriatic Lineament. Geol Carp 55/1:43–50

    Google Scholar 

  • Blundy JD, Robinson JAC, Wood BJ (1998) Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. Earth Planet Sci Lett 160:493–504

    Article  Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonatite and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  Google Scholar 

  • Brennan JM, Shaw HF, Ryeson FJ, Phinnay DL (1995) Mineral aqueous fluid partitioning of trace elements at 900°C and 2 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochem Cosmochim Acta 59:3331–3350

    Article  Google Scholar 

  • Brey GP, Köhler TP (1990) Geothermobarometry in four phase lherzolites II. New thermobarometers and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Chazot G, Menzies M, Harte B (1996) Silicate glasses in spinel lherzolites from Yemen: origin and chemical composition. Chem Geol 134/1–2:159–179

    Article  Google Scholar 

  • Coltorti M, Beccaluva L, Bonadiman C, Salvini L, Siena F (2000) Glasses in mantle xenoliths as geochemical indicators of metasomatic agents. Earth Planet Sci Lett 183:303–320

    Article  Google Scholar 

  • Coltorti M, Beccaluva L, Bonadiman C, Faccini B, Ntaflos T, Siena F (2004) Amphibole genesis via metasomatic reaction with clinopyroxene in mantle xenoliths from Victoria Land, Antarctica. Lithos 75:115–139

    Article  Google Scholar 

  • Coltorti M, Bonadiman C, Faccini B, Ntaflos T, Siena F (2007) Slab melt and intraplate metasomatism in Kapfenstein mantle xenoliths (Styrian Basin, Austria). Lithos 94:66–89

    Article  Google Scholar 

  • Csontos L, Tari G, Bergerat F, Fodor L (1992) Evolution of stress fields in the Carpatho-Pannonian area during the Neogene. Tectonophysics 199:73–91

    Article  Google Scholar 

  • Dawson JB (1984) Contrasting types of upper-mantle metasomatism? In: Kornprobst J (ed) Kimberlites II: The mantle and crust–mantle relationships. Elsevier, Holland, pp 289

  • Demény A, Vennemann TW, Hegner E, Nagy G, Milton JA, Embey-Isztin A, Homonay Z, Dobosi G (2004) Trace element and C–O–Sr–Nd isotope evidence for subduction related carbonate–silicate melts in mantle xenoliths (Pannonian Basin, Hungary). Lithos 75:89–113

    Article  Google Scholar 

  • Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). Neues Jahrb Mineral Abh 178:217–238

    Article  Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Mineral Petrol 107:340–354

    Article  Google Scholar 

  • Eggler DH (1987) Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints. In: Menzies MA, Hawkesworth CJ (eds) Mantle metasomatism. Academic, New York, pp 21–42

    Google Scholar 

  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Ingram G, Harmon RS, Scharbert HG (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343

    Google Scholar 

  • Embey-Isztin A, Scharbert HG (2000) Glasses in peridotite xenoliths from the western Pannonian basin. Ann Hist Nat Mus Nat Hung 92:5–20

    Google Scholar 

  • Fodor L, Csontos L, Bada G, Györfy I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian basin and neighbouring orogenes: a new synthesis of paleostress data. In: Durand B, Jolivet L, Horváth F, Séranne M (eds) The mediterranean basins: tertiary extension within the Alpine Orogen. Geol Soc Lond Spec Publ 134:295–334

  • Francis D (1987) Mantle-melt interaction recorded in spinel lherzolite xenoliths from the Alligator Lake volcanic complex, Yukon, Canada. J Petrol 28:569–597

    Google Scholar 

  • Frezzotti ML (2001) Silicate-melt inclusions study in magmatic rocks: applications to petrology. Lithos 55:273–299

    Article  Google Scholar 

  • Harangi Sz, Downes H, Kósa L, Szabó Cs, Thirlwall MF, Mason PRD, Mattey D (2001) Almandine garnet in calc-alkaline volcanic rocks of the Northern Pannonian basin (Eastern-Central Europe): geochemistry, petrogenesis and geodynamic implications. J Petrol 42:1813–1843

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hauri EH, Shimizu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227

    Article  Google Scholar 

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357

    Article  Google Scholar 

  • Huismans RS, Podlachikov YY, Cloetingh S (2001) Dynamic modelling of the transition from passive to active rifting, application to the Pannonian basin. Tectonics 20/6:1021–1039

    Article  Google Scholar 

  • Ionov DA, Dupuy C, O’Reilly S, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–294

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced melting in mantle xenoliths from Mongolia. J Petrol 35:753–785

    Google Scholar 

  • Kázmér M, Kovács S (1985) Permian-Paleogene paleogeography along the Eastern part of the Insubric-Periadriatic Lineament system: evidence for continental escape of the Bakony–Drazug Unit. Acta Geologica Hungarica 28:71–84

    Google Scholar 

  • Kóthay K, Szabó Cs, Török K, Sharygin V (2005) A droplet of the magma: silicate melt inclusions in olivine phenocrysts from alkali basalt of Hegyestű. Bull Hung Geol Soc 35/1:31–56. (In Hungarian with English abstract)

    Google Scholar 

  • Kovács I, Csontos L, Szabó Cs, Bali E, Falus G, Benedek K, Zajacz Z (2007) Paleogene-early Miocene igneous rocks and geodynamics of the Alpine–Carpathian–Pannonian–Dinaric region: an integrated approach. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic Volcanism in the Mediterranean Area, Geological Society of America Special Paper, pp 93–112

  • Laurora A, Mazzucchelli M, Rivalenti G, Vannucci R, Zanetti A, Barbieri MA, Cingolani CA (2001) Metasomatism and melting in carbonated peridotite xenoliths from the mantle wedge: the Gobernador Gregores case (Southern Patagonia). J Petrol 42:96–87

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (2000) The system CaO–MgO–SiO2–CO2 at 1 GPa, metasomatic wehrlites, and primary carbonatite magmas. Contrib Mineral Petrol 138:214–228

    Article  Google Scholar 

  • Lee WJ, Huang WL, Wyllie PJ (2000) Melts in the mantle modeled in the system CaO–MgO–SiO2–CO2 at 2.7 GPa. Contrib Mineral Petrol 138:199–213

    Article  Google Scholar 

  • Lenkey L (1999) Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution. PhD thesis, Vrije Universiteit, Amsterdam, pp 215

  • McDonough WF, Sun S-s (1995) The composition of the Earth. Chem Geol 120/3–4:223–253

    Article  Google Scholar 

  • Mercier JCC (1980) Single-pyroxene thermobarometry. Tectonophysics 70:1–37

    Article  Google Scholar 

  • Németh K, Martin U (1999) Small-volume volcanoclastic flow deposits related to phreatomagmatic explosive eruptive centers near Szentbekkalla, Bakony–Balaton Highland Volcanic Field (BBHVF), Hungary: pyroclastic flow or hydroclastic flow? Bull Hung Geol Soc 129:393–417

    Google Scholar 

  • Nimis P, (1999) Clinopyroxene geobarometry of magmatic rocks, Part 2: Structural geobarometers for basic to acid, tholeiitic and mildly alkaline magmatic systems. Contrib Mineral Petrol 135:62–74

    Article  Google Scholar 

  • Niida K, Green DH (1999) Stability and chemical composition of pargasitic amphibole in MORB pyrolite under upper mantle conditions. Contrib Mineral Petrol 135:18–40

    Article  Google Scholar 

  • Olafsson M, Eggler DH (1983) Phase relations of amphibole, amphibole-carbonate, and phlogopite-carbonate peridotite: petrologic constraints on the asthenosphere. Earth Planet Sci Lett 64:305–315

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl J Geostand Geoanal 21:115–144

    Article  Google Scholar 

  • Putirka K, Johnson M, Kinzler R, Longhi J, Walker D (1996) Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid equilibra, 0–30 kbar. Contrib Mineral Petrol 123:92–108

    Article  Google Scholar 

  • Putirka K, Mikaelian H, Ryerson FJ, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, ID. Am Miner 88:1542–1554

    Google Scholar 

  • Rosenbaum JM, Wilson M, Downes H (1997) Multiple enrichment of the Carpathian–Pannonian mantle: Pb–Sr–Nd isotope and trace element constraints. J Geophys Res 102:14947–14961

    Article  Google Scholar 

  • Schiano P, Bourdon B (1999) On the preservation of mantle information in ultramafic nodules, glass inclusions within minerals versus interstitial glasses. Earth Planet Sci Lett 169:173–188

    Article  Google Scholar 

  • Schiano P, Clocchiatti R, Bourdon B, Burton B, Thellier B (2000) The composition of melt inclusions in minerals at the garnet-spinel transition zone. Earth Planet Sci Lett 174:375–383

    Article  Google Scholar 

  • Seghedi I, Downes H, Szakács A, Mason P, Thirlwall MF, Rosu E, Pécskay Z, Márton E, Panaiotu C (2004) Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72:117–146

    Article  Google Scholar 

  • Stosch HG, Seck HA (1980) Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany. Geochim Cosmochim Acta 44:457–470

    Article  Google Scholar 

  • Szabó Cs, Bodnar RJ, Sobolev AV (1996) Metasomatism associated with subduction-related, volatile-rich silicate melt in the upper mantle beneath the Nógrád–Gömör Volcanic Field, Northern Hungary/Southern Slovakia: evidence for silicate melt inclusions. Eur J Mineral 8:881–899

    Google Scholar 

  • Tiepolo M, Vannucci R, Oberti R, Foley SF, Bottazzi P, Zanetti A (2000) Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal chemical constraints and implications for natural systems. Earth Planet Sci Lett 176:185–201

    Article  Google Scholar 

  • Tiepolo M, Oberti R, Vannucci R (2002) Trace-element incorporation in titanite: constraints from experimentally determined solid/liquid partition coefficients. Chem Geol 191:105–119

    Article  Google Scholar 

  • Tracy RJ (1980) Petrology and genetic significance of an ultramafic xenoliths suite from Tahiti. Earth Planet Sci Lett 48:80–96

    Article  Google Scholar 

  • Vannucci R, Bottazzi P, Wulff-Pedersen E, Neumann ER (1998) Partitioning of REE, Y, Sr, Zr and Ti between clinopyroxene and silicate melts in the mantle under La Palma (Canary Islands): implications for the nature of the metasomatic agents. Earth Planet Sci Lett 158:39–51

    Article  Google Scholar 

  • Varela ME, Clocchiatti R, Massare D, Schiano P (1998) Metasomatism in subcontinental mantle beneath Northern Patagonia (Rio Negro Patagonia), Argentina: evidence from silica-rich melt inclusions. Mineral Petrol 62:103–121

    Article  Google Scholar 

  • Veksler IV, Petibon C, Jenner G, Dorfman AM, Dingwell DB (1998) Trace element partitioning in immiscible silicate and carbonate liquid systems: an initial experimental study using a centrifuge autoclave. J Petrol 39(11–12):2095–2104

    Article  Google Scholar 

  • Wulff-Pedersen E, Neumann ER, Jensen BB (1996) The upper mantle under La Palma, Canary Islands: formation of Si–K–Na-rich melt and its importance as a metasomatic agent. Contrib Mineral Petrol 125:113–139

    Article  Google Scholar 

  • Wulff-Pedersen E, Neumann ER, Vannucci R, Bottazzi P, Ottolini L (1999) Silicic melts produced by reaction between peridotite and infiltrating basaltic melts: ion probe data on glasses and minerals in veined xenoliths from La Palma, Canary Islands. Contrib Mineral Petrol 137:59–82

    Article  Google Scholar 

  • Zanetti A, Vannucci R, Oberti R, Dobosi G (1995) Trace element composition and crystal-chemistry of mantle amphiboles from the Pannonian and Eastern Transylvanian Basins: Implications for enrichment events in the lithospheric mantle. Acta Vulcanol 7:265–276

    Google Scholar 

Download references

Acknowledgments

We thank Paolo Olmi, Orlando Vaselli (University of Florence) and Berit Wenzel (University of Copenhagen) for help during microprobe analyses. Hilary Downes (University of London), Szabolcs Harangi and Kálmán Török (Eötvös University), Attila Demény (Hungarian Academy of Science) are thanked for discussions. We are grateful to the fellows at the Lithosphere Research Fluid Lab (Eötvös University) for their assistance, and to Massimo Coltorti and an anonymous reviewer for their detailed work and suggestions. Previous reviews by G. Rivalenti and D. Ionov also significantly improved the paper. This work was supported by the Hungarian National Science Foundation (OTKA T030846 to C. Szabó), the European Commission Marie Curie Fellowship Program, and the Danish Lithosphere Centre. This is publication No 27 of the Lithosphere Fluid Research Lab of the Department of Petrology and Geochemistry at Eötvös University, Budapest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enikő Bali.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bali, E., Zanetti, A., Szabó, C. et al. A micro-scale investigation of melt production and extraction in the upper mantle based on silicate melt pockets in ultramafic xenoliths from the Bakony–Balaton Highland Volcanic Field (Western Hungary). Contrib Mineral Petrol 155, 165–179 (2008). https://doi.org/10.1007/s00410-007-0234-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0234-4

Keywords

Navigation