Skip to main content

Advertisement

Log in

Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We report a new observation of the olivine B-type lattice-preferred orientation (LPO), from the garnet peridotite at Cima di Gagnone, Switzerland. The olivine B-type fabric forms at low temperatures and/or high stress in the presence of water, and is of particular interest because it may be used to explain the trench-parallel shear-wave splitting that is often observed at subduction zones. In conjunction with the olivine B-type fabric, we have found strong orthopyroxene LPO that is identical to those formed under water-free conditions. This suggests that water may not have a significant effect on orthopyroxene fabric. From the olivine microstructure, we determine that a stress of 22 ± 8 MPa was applied during the deformation event that formed the olivine LPO. Using an olivine flow-law, and assuming geological strain-rates, we determine the temperature of deformation to be 800 ± 175°C. This does not preclude an ultra-deep origin for the ultramafic rocks at Cima di Gagnone, but indicates that much of the deformation recorded in the microstructure occurred at modest temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abramson EH, Brown JM, Slutsky LJ, Zaug J (1997) The elastic constants of San Carlos Olivine to 17 GPa. J Geophys Res B Solid Earth Planets 102:12,253–12,263

    Google Scholar 

  • Akaogi M, Akimoto S (1977) Pyroxene-garnet solid-solution equilibria in the systems Mg4Si4O12–Mg3Al2Si3O12 and Fe4Si4O12–Fe3Al2Si3O12 at high pressures and temperatures. Phys Earth Planet Inter 15:90–106

    Article  Google Scholar 

  • Ben Ismail W, Mainprice D (1998) An olivine fabric database; an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296:145–157

    Article  Google Scholar 

  • Bozhilov KN, Green HW II, Dobrzhinetskaya L (1999) Clinoenstatite in Alpe Arami peridotite; additional evidence of very high pressure. Science 284:129–132

    Article  Google Scholar 

  • Buiskool Toxopeus J (1976) Peterofabrics, microtextures and dislocation substructures of olivine in a peridotite mylonite (Alpe Arami, Switzerland). Leidse Geol Meded 51:1–36

    Google Scholar 

  • Chai M, Brown JM, Slutsky LJ (1997) The elastic constants of an aluminous orthopyroxene to 12.5 GPa. J Geophys Res B Solid Earth Planets 102:14,779–14,785

    Article  Google Scholar 

  • Christensen NI, Lundquist SM (1982) Pyroxene orientation within the upper mantle. Geol Soc Am Bull 93:279–288

    Article  Google Scholar 

  • Collins MD, Brown JM (1998) Elasticity of an upper mantle clinopyroxene. Phys Chem Miner 26:7–13

    Article  Google Scholar 

  • Cordellier F, Boudier F, Boullier AM (1981) Structural study of the Almklovdalen peridotite massif (southern Norway). Tectonophysics 77:257–281

    Article  Google Scholar 

  • Dobrzhinetskaya L, Green HW II, Wang S (1996) Alpe Arami: a peridotite massif from depths of more than 300 kilometers. Science 271:1841–1845

    Article  Google Scholar 

  • Durham WB, Goetze C, Blake B (1977) Plastic flow of oriented single crystals of olivine; 2, Observations and interpretations of the dislocation structures. J Geophys Res 82:5755–5770

    Article  Google Scholar 

  • Evans BW, Trommsdorff V (1978) Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps. Earth Planet Sci Lett 40:333–348

    Article  Google Scholar 

  • Fischer KM, Fouch MJ, Wiens DA, Boettcher MS (1998) Anisotropy and flow in Pacific subduction zone back-arcs. Pure Appl Geophys 151:463–475

    Article  Google Scholar 

  • Frese K (2001) Microstructures and lattice preferred orientation of olivine in metaperidotites (Central Alps). Doctoral Dissertation, ETH Zurich, pp 104

    Google Scholar 

  • Frese K, Trommsdorff V, Kunze K (2003) Olivine [100] normal to foliation; lattice preferred orientation in prograde garnet peridotite formed at high H2O activity, Cima di Gagnone (Central Alps). Contrib Mineral Petrol 145:75–86

    Google Scholar 

  • Frisillo AL, Barsch GR (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. J Geophys Res 77:6360–6384

    Article  Google Scholar 

  • Fujino K, Nakazaki H, Momoi H, Karato S-i, Kohlstedt DL (1993) TEM observation of dissociated dislocations with b=[010] in naturally deformed olivine. Phys Earth Planet Inter 78:131–137

    Article  Google Scholar 

  • Green HW II, Dobrzhinetskaya L, Riggs EM, Jin ZM (1997) Alpe Arami: a peridotite massif from the mantle transition zone? Tectonophysics 279:1–21

    Article  Google Scholar 

  • Hacker BR, et al (1997) Determining the origin of ultrahigh-pressure lherzolites: discussion and reply. Science 278:701–707

    Article  Google Scholar 

  • Hall CE, Fischer KM, Parmentier EM, Blackman DK (2000) The influence of plate motion on three-dimensional back arc mantle flow and shear wave splitting. J Geophys Res B Solid Earth Planets 105:28,009–28,033

    Google Scholar 

  • Holtzman BK, et al (2003) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301:1227–1230

    Article  Google Scholar 

  • Isaak DG (1992) High-temperature elasticity of iron-bearing olivines. J Geophys Res B Solid Earth Planets 97:1871–1885

    Article  Google Scholar 

  • Jung H, Karato S-i (2001a) Water-induced fabric transitions in olivine. Science 293:1460–1462

    Article  Google Scholar 

  • Jung H, Karato S-i (2001b) Effects of water on dynamically recrystallized grain-size of olivine. J Struct Geol 23:1337–1344

    Article  Google Scholar 

  • Karato S-i (1987) Scanning electron microscope observation of dislocations in olivine. Phys Chem Miner 14:245–248

    Article  Google Scholar 

  • Karato S-i, Jung H (2003) Effects of pressure on high-temperature dislocation creep in olivine. Philos Mag 83:401–414

    Article  Google Scholar 

  • Katayama I, Karato S-i (2006) Wet fabric transition in olivine at low temperature: implication for flow pattern in the subduction zone. Phys Earth Planet Inter (in press)

  • Katayama I, Jung H, Karato S-i (2004) New type of olivine fabric from deformation experiments at modest water content and low stress. Geology 32:1045–1048

    Article  Google Scholar 

  • Kneller E, van Keken P, Karato S-i, Park J (2005) B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models. Earth Planet Sci Lett 237:781–797

    Article  Google Scholar 

  • Kohlstedt DL, Goetze C, Durham WB, Vander SJ (1976) New technique for decorating dislocations in olivine. Science 191:1045–1046

    Article  Google Scholar 

  • Kohlstedt DL, Keppler H, Rubie DC (1996) Solubility of water in the alpha, beta and gamma phases of (Mg,Fe)2SiO4. Contrib Mineral Petrol 123:345–357

    Article  Google Scholar 

  • Mainprice D (1990) A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput Geosci 16:385–393

    Article  Google Scholar 

  • Mehl L, Hacker BR, Hirth G, Kelemen PB (2003) Arc-parallel flow within the mantle wedge; evidence from the accreted Talkeetna Arc, south central Alaska. J Geophys Res B Solid Earth Planets 108:2375

    Article  Google Scholar 

  • Mizukami T, Wallis SR, Yamamoto J (2004) Natural examples of olivine lattice preferred orientation patterns with a flow-normal a-axis maximum. Nature 427:432–436

    Article  Google Scholar 

  • Mockel JR (1969) Structural petrology of the garnet-peridotite of Alpe Arami (Ticino, Switzerland). Leidse Geol Meded 42:61–130

    Google Scholar 

  • Nicolas A, Christensen NI (1987) Formation of anisotropy in upper mantle peridotites: a review. In: Fuchs K, Froidevaux C (eds) Composition, structure and dynamics of the lithosphere–asthenosphere system, vol. 16. American Geophysical Union, Washington, pp 111–123

  • Nimis P, Trommsdorff V (2001) Revised thermobarometry of Alpe Arami and other garnet peridotites from the Central Alps. J Petrol 42:103–115

    Article  Google Scholar 

  • Peyton V, et al (2001) Mantle flow at a slab edge: seismic anisotropy in the Kamchatka region. Geophys Res Lett 28:379–382

    Article  Google Scholar 

  • Pfiffner M, Trommsdorff V (1998) The high-pressure ultramafic–mafic–carbonate suite of Cima Lunga-Adula, Central Alps: excursions to Cima di Gagnone and Alpe Arami. In: Anonymous IEC 97; 5th international eclogite conference, vol. 78. Staebli Verlag AG, Zurich, Switzerland, pp 337–354

  • Prior DJ, et al (1999) The application of electron backscatter diffraction and orientation contrast imaging in the SEM to textural problems in rocks. Am Mineral 84:1741–1759

    Google Scholar 

  • Russo RM, Silver PG (1994) Trench-parallel flow beneath the Nazca Plate from seismic anisotropy. Science 263:1105–1111

    Article  Google Scholar 

  • Schmid SM et al (1990) The significance of the Schams Nappes for the reconstruction of the paleotectonic and orogenic evolution of the Penninic Zone along the NFP-20 East traverse (Grisons, eastern Switzerland). In: Roure F, Heitzmann P, Polino R (eds) Deep structure of the Alps, vol. 156. Societe Geologique de France, Paris, France, pp. 263–287

  • Skemer P, Katayama I, Jiang Z, Karato S-i (2005) The misorientation-index: development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 411:157–167

    Article  Google Scholar 

  • Smith GP, et al (2001) A complex pattern of mantle flow in the Lau Backarc. Science 292:713–716

    Article  Google Scholar 

  • Song S, Su L (1998) Rheological properties of mantle peridotites at Yushigou in the North Qilian Mountains and their implications for plate dynamics. Acta Geol Sin (English Edition) 72:131–141

    Google Scholar 

  • Yoshino G (1961) Structural-petrological studies of peridotite and associated rocks of the Higashiakaishi-yama District, Shikoku, Japan. J Sci Hiroshima Univ C Geol Mineral 3:343–402

    Google Scholar 

  • Zhang S, Karato S-i (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–777

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the late Professor Volkmar Trommsdorff, who graciously guided our visits to Cima di Gagnone and Alpe Arami. K. Kunze is thanked for his input on previous studies of Cima di Gagnone. G. Hirth and an anonymous reviewer are thanked for their help clarifying our arguments. Z. Jiang is thanked for helpful discussions, and assistance with EBSD. This study was supported by a grant from the National Science Foundation (EAR-0309448), a grant from the Geological Society of America (7526-03), and by the Japan Society for the Promotion of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Skemer.

Additional information

Communicated by T.L. Grove

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skemer, P., Katayama, I. & Karato, Si. Deformation fabrics of the Cima di Gagnone peridotite massif, Central Alps, Switzerland: evidence of deformation at low temperatures in the presence of water. Contrib Mineral Petrol 152, 43–51 (2006). https://doi.org/10.1007/s00410-006-0093-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0093-4

Keywords

Navigation