Skip to main content
Log in

U-Pb garnet chronometry in high-grade rocks—case studies from the central Damara orogen (Namibia) and implications for the interpretation of Sm-Nd garnet ages and the role of high U-Th inclusions

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Garnets from different migmatites and granites from the Damara orogen (Namibia) were dated with the U-Pb technique after bulk dissolution of the material. Measured 206Pb/204Pb ratios are highly variable and range from ca. 21 to 613. Variations in isotope (208Pb/204Pb, 206Pb/204Pb) and trace element (Th/U, U/Nd, Sm/Nd) ratios of the different garnets show that some garnets contain significant amounts of monazite and zircon inclusions. Due to their very low 206Pb/204Pb ratios, garnets from pelitic migmatites from the Khan area yield Pb-Pb ages with large errors precluding a detailed evaluation. However, the 207Pb/206Pb ages (ca. 550–500 Ma) appear to be similar to or older than U-Pb monazite ages (530±1–517±1 Ma) and Sm-Nd garnet ages (523±4–512±3 Ma) from the same sample. It is reasonable to assume that the Pb-Pb garnet ages define growth ages because previous studies are consistent with a higher closure temperature for the U-Pb system in garnet relative to the U-Pb system in monazite and the Sm-Nd system in garnet. For igneous migmatites from Oetmoed, Pb-Pb garnet ages (483±15–492±16 Ma) and one Sm-Nd garnet whole rock age (487±8 Ma) are similar whereas the monazite from the same sample is ca. 30–40 Ma older (528±1 Ma). These monazite ages are, however, similar to monazite ages from nearby unmigmatized granite samples and constrain precisely the intrusion of the precursor granite in this area. Although there is a notable difference in closure temperature for the U-Pb and Sm-Nd system in garnet, the similarity of both ages indicate that both garnet ages record garnet growth in a migmatitic environment. Restitic garnet from an unmigmatized granite from Omaruru yields similar U-Pb (493±30–506±30 Ma) and Sm-Nd (493±6–488±7 Ma) garnet ages whereas the monazite from this rock is ca. 15–25 Ma older (516±1–514±1 Ma). Whereas the monazite ages define probably the peak of regional metamorphism in the source of the granite, the garnet ages may indicate the time of melt extraction. For igneous garnets from granites at Oetmoed, the similarity between Pb-Pb (483±34–474±17 Ma) and Sm-Nd (492±5–484±13 Ma) garnet ages is consistent with fast cooling rates of granitic dykes in the lower crust. Differences between garnet and monazite U-Pb ages can be explained by different reactions that produced these minerals at different times and by the empirical observation that monazite seems resistant to later thermal re-equilibration in the temperature range between 750 and 900 °C (e.g. Braun et al. 1998). For garnet analyses that have low 206Pb/204Pb ratios, the influence of high-μ inclusions is small. However, the relatively large errors preclude a detailed evaluation of the relationship between the different chronometers. For garnet with higher 206Pb/204Pb ratios, the overall similarity between the Pb-Pb and Sm-Nd garnet ages implies that the inclusions are not significantly older than the garnet and therefore do not induce a premetamorphic Pb signature upon the garnet. The results presented here show that garnet with low 238U/204Pb ratios together with Sm-Nd garnet data and U-Pb monazite ages from the same rock can be used to extract geologically meaningful ages that can help to better understand tectonometamorphic processes in high-grade terranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2. a
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  • Bingen B, van Breemen O (1998) U-Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib Mineral Petrol 132:336–353

    CAS  Google Scholar 

  • Bingen B, Demaiffe D, Hertogen D (1996) Redistribution of rare-earth elements, Th and U over accessory minerals in the course of amphibolite to granulite facies metamorphism: the role of apatite and monazite in orthogneisses from SW Norway. Geochim Cosmochim Acta 60:1341–1354

    Article  CAS  Google Scholar 

  • Braun I, Montel J-M, Nicollet C (1998) Electron microprobe dating of monazites from high-grade gneisses and pegmatites of the Kerala Khondalite Belt, southern India. Chem Geol 146:65–85

    Article  CAS  Google Scholar 

  • Briqueu L, Lancelot JR, Valois J-P, Walgenwitz F (1980) Géochronologie U-Pb et genèse d'un type de minéralisation uranifère: Les alaskites de Goanikontes (Namibie) et leur encaissant. Bull Cent Rech Expl-Prod Elf-Aquit 4:759–811

    Google Scholar 

  • Burton KW, O´Nions RK (1991) High-resolution garnet chronometry and the rates of metamorphic processes. Earth Planet Sci Lett 107:649–671

    Article  CAS  Google Scholar 

  • Cameron AE, Smith DH, Walker RL (1969) Mass spectrometry of nanogram-size samples of lead. Anal Chem 41:525–526

    CAS  Google Scholar 

  • Christensen JN, Rosenfeld JL, DePaolo DJ (1989) Rates of tectonometamorphic processes from rubidium and strontium isotopes in garnet. Science 244:1465–1469

    CAS  Google Scholar 

  • Clemens JD, Wall VJ (1988) Controls on the mineralogy of S-type volcanic and plutonic rocks. Lithos 21:53–66

    CAS  Google Scholar 

  • Cohen AS, O´Nions RK, Siegenthaler R, Griffin WL (1988) Chronology of the pressure-temperature history recorded by a granulite terrain. Contrib Mineral Petrol 98:303–311

    CAS  Google Scholar 

  • Copeland P, Parrish RR, Harrison TM (1988) Identification of inherited radiogenic Pb in monazite and implications for U-Pb systematics. Nature 333:760–763

    CAS  Google Scholar 

  • DeWolf CP, Belshaw NS, O´Nions RK (1993) A metamorphic history from micron-scale chronometry of monazite. Earth Planet Sci Lett 120:207–220

    Article  CAS  Google Scholar 

  • DeWolf CP, Zeissler CJ, Halliday AN, Mezger K, Essene EJ (1996) The role of inclusions in U-Pb and Sm-Nd garnet geochronology: Stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochim Cosmochim Acta 60:121–134

    Article  CAS  Google Scholar 

  • Erambert M, Austhreim H (1993) The effect of fluid and deformation on zoning and inclusion patterns in poly-metamorphic garnets. Contrib Mineral Petrol 115:204–214

    CAS  Google Scholar 

  • Foster G, Kinny P, Vance D, Prince C, Harris N (2000) The significance of monazite U-Th-Pb age data in metamorphic assemblages; a combined study of monazite and garnet chronometry. Earth Planet Sci Lett 181:327–340

    Article  CAS  Google Scholar 

  • Harris NBW, Gravestock P, Inger S (1992) Ion-microprobe determinations of trace-element concentrations in garnets from anatectic assemblages. Chem Geol 100:41–49

    Article  CAS  Google Scholar 

  • Hartmann O, Hoffer E, Haack U (1983) Regional metamorphism in the Damara orogen: Interaction of crustal motion and heat transfer. In: Miller R McG (ed) Evolution of the Damara orogen. Spec Publ Geol Soc S Afr 11:233–241

    Google Scholar 

  • Hawkins DP, Bowring SA (1997) U-Pb systematics of monazite and xenotime: case studies from the Paleaoproterozoic of the Grand Canyon, Arizona. Contrib Mineral Petrol 127:87–103

    Article  CAS  Google Scholar 

  • Hawkins DP, Bowring, SA (1999) U-Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from the Grand Canyon, Arizona. Contrib Mineral Petrol 134:150–169

    Google Scholar 

  • Henson BJ, Zhou B (1995) Retention of isotopic memory in garnets partially broken down during an overprinting granulite-facies metamorphism: Implications for the Sm-Nd closure temperature. Geology 23:225–228

    Article  CAS  Google Scholar 

  • Hickmott DD, Shimizu N, Spear FS, Selverstone J (1987) Trace element zoning in a metamorphic garnet. Geology 15:573–576

    CAS  Google Scholar 

  • Hoernes S, Hoffer E (1979) Equilibrium relations of prograde metamorphic mineral assemblages—a stable isotope study of rocks of the Damara orogen. Contrib Mineral Petrol 68:377–389

    CAS  Google Scholar 

  • Housh T, Bowring SA (1991) Lead isotopic heterogeneities within alkali feldspars: implications for the determination of initial lead composition. Geochim Cosmochim Acta 55:2309–2316

    Article  CAS  Google Scholar 

  • Humphries FJ, Cliff RA (1982) Sm-Nd dating and cooling history of Scourian granulites, Sutherland. Nature 295:515–517

    Google Scholar 

  • Jagoutz E (1988) Nd and Sr systematics in an eclogite xenolith from Tanzania: Evidence for frozen mineral equilibria in continental lithosphere. Geochim Cosmochim Acta 52:1285–1293

    CAS  Google Scholar 

  • Jung S (2001) High-temperature, low/medium-pressure clockwise P-T paths and melting in the development of regional migmatites: The role of crustal thickening and repeated plutonism. Geol J 35:345–359

    Article  Google Scholar 

  • Jung S, Hoernes S, Masberg P, Hoffer E (1999) The petrogenesis of some migmatites and granites (central Damara Orogen, Namibia): Evidence for disequilibrium melting, wall rock contamination and crystal fractionation. J Petrol 40:1241–1269

    CAS  Google Scholar 

  • Jung S, Hoernes S, Mezger K (2000a) Origin of some Pan-African syn-tectonic S-type and post-tectonic A-type granites (Namibia)—products of melting of crustal sources, fractional crystallization and wall rock entrainment. Lithos 50:259–287

    Article  CAS  Google Scholar 

  • Jung S, Hoernes S, Mezger K (2000b) Geochronology and petrology of stromatic and nebulitic migmatites from the Proterozoic Damara Belt—importance of episodic fluid-present disequilibrium melting and consequences for granite petrology. Lithos 51:153–179

    Article  CAS  Google Scholar 

  • Jung S, Mezger K (2001) Geochronology in migmatites—a Sm-Nd, U-Pb and Rb-Sr study from the Proterozoic Damara belt (Namibia) and implications for polyphase development of migmatites in high-grade terranes. J Metamorph Geol 19:77–97

    Article  CAS  Google Scholar 

  • Jung S, Mezger K (2003) Petrology of basement-dominated terranes: I. Regional metamorphic T-t path and geochronological constraints on Pan-African high-grade metamorphism (central Damara orogen, Namibia). Chem Geol 198:223–247

    Article  CAS  Google Scholar 

  • Jung S, Mezger K, Hoernes S (1998b) Geochemical and isotopic studies of syenites from the Proterozoic Damara belt (Namibia): Implications for the origin of syenites. Mineral Mag 62A:729–730

    CAS  Google Scholar 

  • Jung S, Mezger K, Hoernes S (2001) Trace element and isotopic (Sr, Nd, Pb, O) arguments for a mid crustal origin of Pan-African garnet-bearing S-type granites from the Damara orogen (Namibia). Precambrian Res 110:325–355

    CAS  Google Scholar 

  • Jung S, Mezger K, Hoernes S (2003) Petrology of basement-dominated terranes: II. Contrasting isotopic (Sr, Nd, Pb and O) signatures of basement-derived granites and constraints on the source region of granite (Damara orogen, Namibia). Chem Geol 199:1-28 (in press)

    CAS  Google Scholar 

  • Jung S, Mezger K, Masberg P, Hoffer E, Hoernes S (1998a) Petrology of an intrusion-related high-grade migmatite: implications for partial melting of metasedimentary rocks and leucosome-forming processes. J Metamorph Geol 16:425–445

    CAS  Google Scholar 

  • Kingsbury JA, Miller CF, Wooden JL, Harrison MT (1993) Monazite paragenesis and U-Pb systematics in rocks of the eastern Mojave Desert, California, USA: implications for thermochronometry. Chem Geol 110:147–167

    CAS  Google Scholar 

  • Kukla C, Kramm U, Kukla PA, Okrusch M (1991) U-Pb monazite data relating to metamorphism and granite intrusion in the northwestern Khomas Trough, Damara Orogen, central Namibia. Commun Geol Surv Namibia 7:49–54

    Google Scholar 

  • Lanzirotti A, Hanson GN (1995) U-Pb dating of major and accessory minerals formed during metamorphism and deformation of metapelites. Geochim Cosmochim Acta 59:2513–2526

    Article  Google Scholar 

  • Lanzirotti A, Hanson GN (1996) Geochronology and geochemistry of multiple generations of monazite from the Wepawaug schists, Connecticut, USA: implications for monazite stability in metamorphic rocks. Contrib Mineral Petrol 125:332–340

    Article  CAS  Google Scholar 

  • Ludwig KR, Silver LT (1977) Lead isotope inhomogeneity in Precambrian igneous K-feldspars. Geochim Cosmochim Acta 41:1457–1471

    Article  CAS  Google Scholar 

  • Ludwig KR (1991a) PBDAT: a computer program for processing Pb-U-Th isotope data, Version 2.75. US Geol Surv Open File Rep 88–542

  • Ludwig KR (1991b) ISOPLOT: a plotting and regression program for radiogenic isotope data, Version 2.75. US Geol Surv Open File Rep 91–445

  • Maboko MAH, Nakamura E (1995) Sm-Nd garnet ages from the Uluguru granulite complex of Eastern Tanzania: further evidence for post-metamorphic slow cooling in the Mozambique belt. Precambrian Res 74:195–202

    Article  CAS  Google Scholar 

  • Masberg HP, Hoffer E, Hoernes S (1992) Microfabrics indicating granulite-facies metamorphism in the low-pressure central Damara Orogen, Namibia. Precambrian Res 55:243–257

    Article  Google Scholar 

  • Mattinson JM (1986) Geochronology of high-pressure-low temperature Franciscan metabasites. A new approach using the U-Pb system. Geol Soc Am Mem 164:95–105

    CAS  Google Scholar 

  • Mezger K, Hanson GN, Bohlen SR (1989) U-Pb systematics of garnet: dating the growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contrib Mineral Petrol 101:136–148

    CAS  Google Scholar 

  • Mezger K, Essene EJ, Halliday AN (1992) Closure temperature of the Sm-Nd system in metamorphic garnets. Earth Planet Sci Lett 113:397–409

    CAS  Google Scholar 

  • Miller R McG (1983) The Pan-African Damara Orogen of South West Africa/Namibia. In: Miller R McG (ed) Evolution of the Damara orogen. Spec Publ Geol Soc S Afr 11:431–515

    Google Scholar 

  • Möller A, Mezger K, Schenk V (2000) U-Pb dating of metamorphic minerals: Pan-African metamorphism and prolonged slow cooling of high-pressure granulites in Tanzania, East Africa. Precambrian Res 104:123–146

    Article  Google Scholar 

  • Moyes AB, Groenewald PB (1996) Isotopic constraints on Pan-African metamorphism in Dronning Maud Land, Antartica. Chem Geol 129:247–256

    Article  CAS  Google Scholar 

  • Mork MBE, Means EW (1986) Sm-Nd systematics of a gabbro-eclogite transition. Lithos 19:255–267

    Article  CAS  Google Scholar 

  • Paterson BA, Rogers G, Stevens WE (1992) Evidence for inherited Sm-Nd isotopes in granitoid zircon. Contrib Mineral Petrol 111:378–390

    CAS  Google Scholar 

  • Parrish RR (1990) U-Pb dating of monazite and its application to geological problems. Can J Earth Sci 27:1435–1450

    Google Scholar 

  • Parrish RR, Tirull R (1989) U-Pb age of the Baltoro granite, northwest Himalaya, and implications for monazite systematics. Geology 17:1076–1079

    Article  CAS  Google Scholar 

  • Poller U, Huth J, Hoppe P, Williams IS (2001) REE, U, Th, and Hf distribution in zircon from western Carpathian variscan granitoids: a combined cathodoluminescence and ion microprobe study. Am J Sci 301:858–876

    CAS  Google Scholar 

  • Prince CI, Kosler J, Vance D, Günther D (2000) Comparison of laser ablation ICP-MS and isotope dilution REE analyses—implications for Sm-Nd garnet geochronology. Chem Geol 168:255–274

    CAS  Google Scholar 

  • Puhan D (1983) Temperature and pressure of metamorphism in the Central Damara orogen. In: Miller R McG (ed) Evolution of the Damara orogen. Spec Pub Geol Soc S Afr 11:219–223

    Google Scholar 

  • Schärer U (1984) The effect of initial 230Th disequilibrium on young U-Pb ages: The Makalu case, Himalaya. Earth Planet Sci Lett 67:191–204

    Article  Google Scholar 

  • Schmidt A, Wedepohl KH (1983) Chemical composition and genetic relations of the Matchless amphibolite (Damara orogenic belt). Spec Publ Geol Soc S Afr 11:139–145

    Google Scholar 

  • Sevigny JH (1993) Monazite controlled Sm/Nd fractionation in leucogranites: an ion microprobe study of garnet phenocrysts. Geochim Cosmochim Acta 57:4095–4102

    Article  CAS  Google Scholar 

  • Smith HA, Barreiro BA (1990) Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contrib Mineral Petrol 105:602–615

    CAS  Google Scholar 

  • Stowell HH, Goldberg SA (1997) Sm-Nd garnet dating of polyphase metamorphism: northern Coast Mountains, south-east Alaska, USA. J Metamorph Geol 15:439–450

    CAS  Google Scholar 

  • Suzuki K, Adachi M, Kajizuka I (1994) Electron microprobe observations of Pb diffusion in metamorphosed detrital monazites. Earth Planet Sci Lett 128:391–405

    Article  CAS  Google Scholar 

  • Vance D, O'Nions RK (1990) Isotopic chronometry of zoned garnets: Growth kinetics and metamorphic histories. Earth Planet Sci Lett 97:227–240

    Article  CAS  Google Scholar 

  • Vance D, Harris N (1999) Timing of prograde metamorphism in the Zanskar Himalaya. Geology 27:395–398

    Article  CAS  Google Scholar 

  • Vance D, Meier M, Oberli F (1998) The influence of high U-Th inclusions on the U-Th-Pb systematics of almandine-pyrope garnet: results of a combined bulk dissolution, stepwise-leaching, and SEM study. Geochim Cosmochim Acta 62:3527–3540

    CAS  Google Scholar 

  • Vance D, Strachan RA, Jones KA (1998) Extensional versus compressional setting for metamorphism: Garnet chronometry and pressure-temperature-time histories in the Moine Supergroup, northwest Scotland. Geology 26:927–930

    Article  CAS  Google Scholar 

  • von Blanckenburg F (1993) Combined high-precision chronometry and geochemical tracing using accessory minerals applied to the Central-Alpine Bergell intrusion (central Europe). Chem Geol 100:19–40

    Google Scholar 

  • von Quadt A (1992) U-Pb zircon and Sm-Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern window (eastern Alps). Contrib Mineral Petrol 110:57–67

    Google Scholar 

  • Zhou B, Henson BJ (1995) Inherited Sm/Nd isotope components preserved in monazite inclusions within garnets in leucogneiss from East Antarctica and implications for closure temperature studies. Chem Geol 121:317–326

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Max-Planck Society. S.J. would like to thank A.W. Hofmann for free access to lab and mass spectrometry facilities over the years. Discussions with W. Todt, U. Poller and A. Möller are highly appreciated. Iris Bambach is warmly thanked for her patient help with the figures. We gratefully acknowledge the very constructive and unbiased reviews given by B. Bingen and R. Frei, which helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jung.

Additional information

Editorial responsibility: J. Hoefs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, S., Mezger, K. U-Pb garnet chronometry in high-grade rocks—case studies from the central Damara orogen (Namibia) and implications for the interpretation of Sm-Nd garnet ages and the role of high U-Th inclusions. Contrib Mineral Petrol 146, 382–396 (2003). https://doi.org/10.1007/s00410-003-0506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-003-0506-6

Keywords

Navigation