Skip to main content

Advertisement

Log in

The Association Between Insulin Use and Asthma: An Epidemiological Observational Analysis and Mendelian Randomization Study

  • ASTHMA
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Asthma is a common respiratory disease caused by genetic and environmental factors, but the contribution of insulin use to the risk of asthma remains unclear. This study aimed to investigate the association between insulin use and asthma in a large population-based cohort, and further explore their causal relationship by Mendelian randomization (MR) analysis.

Methods

An epidemiological study including 85,887 participants from the National Health and Nutrition Examination Survey (NHANES) 2001–2018 was performed to evaluate the association between insulin use and asthma. Based on the inverse-variance weighted approach, MR analysis were conducted to estimate the causal effect of insulin use on asthma from the UKB and FinnGen datasets, respectively.

Results

In the NHANES cohort, we found that insulin use was associated with an increased risk of asthma [odd ratio (OR) 1.38; 95% CI 1.16–1.64; p < 0.001]. For the MR analysis, we found a causal relationship between insulin use and a higher risk of asthma in both Finn (OR 1.10; p < 0.001) and UK Biobank cohorts (OR 1.18; p < 0.001). Meanwhile, there was no causal association between diabetes and asthma. After multivariable adjustment for diabetes in UKB cohort, the insulin use remained significantly associated with an increased risk of asthma (OR 1.17, p < 0.001).

Conclusions

An association between insulin use and an increased risk of asthma was found via the real-world data from the NHANES. In addition, the current study identified a causal effect and provided a genetic evidence of insulin use and asthma. More studies are needed to elucidate the mechanisms underlying the association between insulin use and asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

GWAS data are available through the MRC IEU Open GWAS database (https://gwas.mrcieu.ac.uk/). NHANES data are publicly available through the Center for Disease Control (https://wwwn.cdc.gov/nchs/nhanes/).

Abbreviations

MR:

Mendelian randomization

NHANES:

National Health and Nutrition Examination Survey

OR:

Odd ratio

SNPs:

Single nucleotide polymorphisms

PSU:

Primary sampling units

SE:

Standard errors

CDC:

Centers for Disease Control and Prevention

GWAS:

Genome-wide association studies

IEU:

Integrative Epidemiology Unit

UKB:

UK Biobank

LD:

Linkage disequilibrium

IVW:

Inverse variance weighting

MVMR:

Multivariable Mendelian randomization

CI:

Confidence intervals

Th2:

T helper type 2

T1DM:

Type 1 diabetes

References

  1. Campa CC, Silva RL, Margaria JP, Pirali T, Mattos MS, Kraemer LR et al (2018) Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nat Commun 9(1):5232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Thorsteinsdottir F, Cardoso I, Keller A, Stougaard M, Frederiksen P, Cohen AS et al (2020) Neonatal vitamin D status and risk of asthma in childhood: results from the D-tect study. Nutrients 12(3):842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liou C-J, Cheng C-Y, Yeh K-W, Wu Y-H, Huang W-C (2018) Protective effects of casticin from vitex trifolia alleviate eosinophilic airway inflammation and oxidative stress in a murine asthma model. Front Pharmacol 9:635

    Article  PubMed  PubMed Central  Google Scholar 

  4. Martinez FD, Guerra S (2018) Early origins of asthma. Role of microbial dysbiosis and metabolic dysfunction. Am J Respir Crit Care Med 197(5):573–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sarkar S, Heyward J, Alexander GC, Kalyani RR (2021) Trends in insulin types and devices used by adults with type 2 diabetes in the United States, 2016 to 2020. JAMA Netw Open 4(10):e2128782

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ahmadizar F, Souverein PC, Arets HG, de Boer A, Maitland van-der Zee AH (2016) Asthma related medication use and exacerbations in children and adolescents with type 1 diabetes. Pediatr Pulmonol 51(11):1113–1121

    Article  PubMed  Google Scholar 

  7. Rayner LH, McGovern A, Sherlock J, Gatenby P, Correa A, Creagh-Brown B et al (2019) The impact of therapy on the risk of asthma in type 2 diabetes. Clin Respir J 13(5):299–305

    Article  CAS  PubMed  Google Scholar 

  8. Ferreira SS, Oliveira MA, Tsujita M, Nunes FPB, Casagrande FB, Gomes E et al (2020) Insulin modulates the immune cell phenotype in pulmonary allergic inflammation and increases pulmonary resistance in diabetic mice. Front Immunol 11:84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fischer HJ, Sie C, Schumann E, Witte AK, Dressel R, van den Brandt J et al (2017) The insulin receptor plays a critical role in T cell function and adaptive immunity. J Immunol 198(5):1910–1920

    Article  CAS  PubMed  Google Scholar 

  10. Esakov E, Nandedkar-Kulkarni N, Al-Dieri AG, Hafner H, Gregg B, McInerney MF (2021) Islet dysfunction in a novel transgenic model of T cell insulitis. Biomolecules 11(4):552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Viardot A, Grey ST, Mackay F, Chisholm D (2007) Potential antiinflammatory role of insulin via the preferential polarization of effector T cells toward a T helper 2 phenotype. Endocrinology 148(1):346–353

    Article  CAS  PubMed  Google Scholar 

  12. Cao Y, He Y, Wang X, Liu Y, Shi K, Zheng Z et al (2019) Polymorphonuclear myeloid-derived suppressor cells attenuate allergic airway inflammation by negatively regulating group 2 innate lymphoid cells. Immunology 156(4):402–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holgate ST (2012) Innate and adaptive immune responses in asthma. Nat Med 18(5):673–683

    Article  CAS  PubMed  Google Scholar 

  14. Peters MC, Schiebler ML, Cardet JC, Johansson MW, Sorkness R, DeBoer MD et al (2022) The impact of insulin resistance on loss of lung function and response to treatment in asthma. Am J Respir Crit Care Med 206(9):1096–1106

    Article  CAS  PubMed  Google Scholar 

  15. Douek IF, Leech NJ, Gillmor HA, Bingley PJ, Gale EA (1999) Children with type-1 diabetes and their unaffected siblings have fewer symptoms of asthma. Lancet 353(9167):1850

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Yang H, Li H, He C, Yang L, Lv G (2022) Insights into modifiable risk factors of cholelithiasis: a Mendelian randomization study. Hepatology 75(4):785–796

    Article  CAS  PubMed  Google Scholar 

  17. Zhao JV, Schooling CM (2019) The role of linoleic acid in asthma and inflammatory markers: a Mendelian randomization study. Am J Clin Nutr 110(3):685–690

    Article  PubMed  Google Scholar 

  18. Nielsen MB, Nordestgaard BG, Benn M, Çolak Y (2021) Plasma adiponectin and risk of asthma: observational analysis, genetic Mendelian randomisation and meta-analysis. Thorax 77:1070

    Article  PubMed  Google Scholar 

  19. Huang L, Li L, Luo X, Huang S, Hou Q, Ge X et al (2019) The association between serum iron status and risk of asthma: a 2-sample Mendelian randomization study in descendants of Europeans. Am J Clin Nutr 110(4):959–968

    Article  PubMed  Google Scholar 

  20. Cardet JC, Ash S, Kusa T, Camargo CA Jr, Israel E (2016) Insulin resistance modifies the association between obesity and current asthma in adults. Eur Respir J 48(2):403–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Takiishi T, Gysemans C, Bouillon R, Mathieu C (2010) Vitamin D and diabetes. Endocrinol Metab Clin N Am 39(2):419–446

    Article  CAS  Google Scholar 

  22. Lyon MS, Andrews SJ, Elsworth B, Gaunt TR, Hemani G, Marcora E (2021) The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol 22(1):1–10

    Article  Google Scholar 

  23. Wu Y, Byrne EM, Zheng Z, Kemper KE, Yengo L, Mallett AJ et al (2019) Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat Commun 10(1):1891

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner K, et al (2022) FinnGen: unique genetic insights from combining isolated population and national health register data. medRxiv

  25. Onengut-Gumuscu S, Chen WM, Burren O, Cooper NJ, Quinlan AR, Mychaleckyj JC et al (2015) Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47(4):381–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z et al (2018) Genome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun 9(1):2941

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen J, Spracklen CN, Marenne G, Varshney A, Corbin LJ, Luan J et al (2021) The trans-ancestral genomic architecture of glycemic traits. Nat Genet 53(6):840–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J et al (2020) The MRC IEU OpenGWAS data infrastructure. BioRxiv 35:99

    Google Scholar 

  29. Julian TH, Glascow N, Barry ADF, Moll T, Harvey C, Klimentidis YC et al (2021) Physical exercise is a risk factor for amyotrophic lateral sclerosis: convergent evidence from Mendelian randomisation, transcriptomics and risk genotypes. EBioMedicine 68:103397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng Q, Yuan S, Yang Q, Lu Y, Loos RJF, Li GHY et al (2020) Causal associations between urinary sodium with body mass, shape and composition: a Mendelian randomization study. Sci Rep 10(1):17475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Teumer A (2018) Common methods for performing Mendelian randomization. Front Cardiovasc Med 5:51

    Article  PubMed  PubMed Central  Google Scholar 

  32. Burgess S, Bowden J, Fall T, Ingelsson E, Thompson SG (2017) Sensitivity analyses for robust causal inference from Mendelian randomization analyses with multiple genetic variants. Epidemiology 28(1):30–42

    Article  PubMed  Google Scholar 

  33. Burgess S, Thompson SG (2017) Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol 32(5):377–389

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen L, Yang H, Li H, He C, Yang L, Lv G (2021) Insights into modifiable risk factors of cholelithiasis: a Mendelian randomization study. Hepatology 75:785

    Article  PubMed  Google Scholar 

  35. Sanderson E (2021) Multivariable Mendelian Randomization and Mediation. Cold Spring Harb Perspect Med 11(2):a038984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chen CZ, Hsu CH, Li CY, Hsiue TR (2017) Insulin use increases risk of asthma but metformin use reduces the risk in patients with diabetes in a Taiwanese population cohort. J Asthma 54(10):1019–1025

    Article  CAS  PubMed  Google Scholar 

  38. Ferreira SS, Nunes FPB, Casagrande FB, Martins JO (2017) Insulin modulates cytokine release, collagen and mucus secretion in lung remodeling of allergic diabetic mice. Front Immunol 8:633

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nie Z, Jacoby DB, Fryer AD (2014) Hyperinsulinemia potentiates airway responsiveness to parasympathetic nerve stimulation in obese rats. Am J Respir Cell Mol Biol 51(2):251–261

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schaafsma D, Gosens R, Ris JM, Zaagsma J, Meurs H, Nelemans SA (2007) Insulin induces airway smooth muscle contraction. Br J Pharmacol 150(2):136–142

    Article  CAS  PubMed  Google Scholar 

  41. Schaafsma D, McNeill KD, Stelmack GL, Gosens R, Baarsma HA, Dekkers BG et al (2007) Insulin increases the expression of contractile phenotypic markers in airway smooth muscle. Am J Physiol Cell Physiol 293(1):C429–C439

    Article  CAS  PubMed  Google Scholar 

  42. Dekkers BG, Schaafsma D, Tran T, Zaagsma J, Meurs H (2009) Insulin-induced laminin expression promotes a hypercontractile airway smooth muscle phenotype. Am J Respir Cell Mol Biol 41(4):494–504

    Article  CAS  PubMed  Google Scholar 

  43. Lambrecht BN, Hammad H (2015) The immunology of asthma. Nat Immunol 16(1):45–56

    Article  CAS  PubMed  Google Scholar 

  44. Loza MJ, Foster S, Bleecker ER, Peters SP, Penn RB (2010) Asthma and gender impact accumulation of T cell subtypes. Respir Res 11(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu TD (2021) Diabetes, insulin resistance, and asthma: a review of potential links. Curr Opin Pulm Med 27(1):29–36

    Article  CAS  PubMed  Google Scholar 

  46. The EURODIAB Substudy 2 Study Group (2000) Decreased prevalence of atopic diseases in children with diabetes. J Pediatr 137(4):470–474

    Article  Google Scholar 

  47. Parackova Z, Zentsova I, Vrabcova P, Klocperk A, Sumnik Z, Pruhova S et al (2020) Neutrophil extracellular trap induced dendritic cell activation leads to Th1 polarization in type 1 diabetes. Front Immunol 11:661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. O’Garra A, Arai N (2000) The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 10(12):542–550

    Article  CAS  PubMed  Google Scholar 

  49. Bretscher PA (2014) On the mechanism determining the TH1/TH2 phenotype of an immune response, and its pertinence to strategies for the prevention, and treatment, of certain infectious diseases. Scand J Immunol 79(6):361–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Taleb N, Bou Khalil P, Zantout MS, Zalloua P, Azar ST (2010) Prevalence of asthmatic symptoms in Lebanese patients with type 1 diabetes and their unaffected siblings compared to age-matched controls. Acta Diabetol 47(Suppl 1):13–18

    Article  PubMed  Google Scholar 

  51. Meerwaldt R, Odink RJ, Landaeta R, Aarts F, Brunekreef B, Gerritsen J et al (2002) A lower prevalence of atopy symptoms in children with type 1 diabetes mellitus. Clin Exp Allergy 32(2):254–255

    Article  CAS  PubMed  Google Scholar 

  52. Mattila PS, Tarkkanen J, Saxen H, Pitkäniemi J, Karvonen M, Tuomilehto J (2002) Predisposition to atopic symptoms to inhaled antigens may protect from childhood type 1 diabetes. Diabetes Care 25(5):865–868

    Article  PubMed  Google Scholar 

  53. Cardwell CR, Shields MD, Carson DJ, Patterson CC (2003) A meta-analysis of the association between childhood type 1 diabetes and atopic disease. Diabetes Care 26(9):2568–2574

    Article  PubMed  Google Scholar 

  54. Li CY, Erickson SR, Wu CH (2016) Metformin use and asthma outcomes among patients with concurrent asthma and diabetes. Respirology 21(7):1210–1218

    Article  PubMed  Google Scholar 

  55. Cui W, Zhang S, Cai Z, Hu X, Zhang R, Wang Y et al (2015) The antidiabetic agent glibenclamide protects airway hyperresponsiveness and inflammation in mice. Inflammation 38(2):835–845

    Article  CAS  PubMed  Google Scholar 

  56. Bankers-Fulbright JL, Kephart GM, Loegering DA, Bradford AL, Okada S, Kita H et al (1998) Sulfonylureas inhibit cytokine-induced eosinophil survival and activation. J Immunol 160(11):5546–5553

    Article  CAS  PubMed  Google Scholar 

  57. Granell R, Henderson AJ, Evans DM, Smith GD, Ness AR, Lewis S et al (2014) Effects of BMI, fat mass, and lean mass on asthma in childhood: a Mendelian randomization study. PLoS Med 11(7):e1001669

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhu Z, Guo Y, Shi H, Liu CL, Panganiban RA, Chung W et al (2020) Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. J Allergy Clin Immunol 145(2):537–549

    Article  CAS  PubMed  Google Scholar 

  59. Fantuzzi G (2005) Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 115(5):911–919 (quiz 20)

    Article  CAS  PubMed  Google Scholar 

  60. Tzanavari T, Giannogonas P, Karalis KP (2010) TNF-alpha and obesity. Curr Dir Autoimmun 11:145–156

    Article  CAS  PubMed  Google Scholar 

  61. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121(6):2111–2117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Peters MC, McGrath KW, Hawkins GA, Hastie AT, Levy BD, Israel E et al (2016) Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respir Med 4(7):574–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sutherland ER, Goleva E, Jackson LP, Stevens AD, Leung DY (2010) Vitamin D levels, lung function, and steroid response in adult asthma. Am J Respir Crit Care Med 181(7):699–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nagel G, Koenig W, Rapp K, Wabitsch M, Zoellner I, Weiland SK (2009) Associations of adipokines with asthma, rhinoconjunctivitis, and eczema in German schoolchildren. Pediatr Allergy Immunol 20(1):81–88

    Article  PubMed  Google Scholar 

  65. Cnop M, Havel PJ, Utzschneider KM, Carr DB, Sinha MK, Boyko EJ et al (2003) Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 46(4):459–469

    Article  CAS  PubMed  Google Scholar 

  66. Tesse R, Schieck M, Kabesch M (2011) Asthma and endocrine disorders: shared mechanisms and genetic pleiotropy. Mol Cell Endocrinol 333(2):103–111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by the Incubation Program for Distinguished Young Scholars by Guangzhou Medical University (GMU2020-207).

Author information

Authors and Affiliations

Authors

Contributions

Study design: RC, SL, ZL, JH, SX; Data collection: JH, SX, ZZ; Data analyses: ZL, SX, TK; Results visualization: ZL, JH, Results interpretations: All authors; Manuscript writing: ZL, JH, SX; Manuscript revising: RC, SL. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Shiyue Li or Ruchong Chen.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 681 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Huang, J., Xie, S. et al. The Association Between Insulin Use and Asthma: An Epidemiological Observational Analysis and Mendelian Randomization Study. Lung 201, 189–199 (2023). https://doi.org/10.1007/s00408-023-00611-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00611-z

Keywords

Navigation