Skip to main content
Log in

Involvement of the Bufadienolides in the Detection and Therapy of the Acute Respiratory Distress Syndrome

  • Acute Lung Injury
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

The acute respiratory distress syndrome (ARDS) represents a major challenge for clinicians as well as basic scientists. The mortality rate for ARDS has been maintained within the range of 40–52%. The authors have examined the involvement of the “cardiotonic steroids” in the pathogenesis and therapy of ARDS. We have studied the possible role of the bufadienolide, marinobufagenin (MBG), in the pathogenesis of ARDS in both a rat model of ARDS and in patients afflicted with that disorder. In addition, the potential therapeutic benefit of an antagonist of MBG, resibufogenin (RBG), in an animal model has been evaluated.

Method

A syndrome resembling human ARDS was produced in the rat by exposing the animals to 100% oxygen for 48 h. In other animals, RBG was administered to these “hyperoxic” rats, and the serum MBG was measured. In human ICU patients, urinary samples were examined for levels of MBG, and the values were compared to those obtained from other ICU patients admitted with diagnoses other than ARDS.

Results

(1) Exposure of rats to hyperoxia produced a histologic picture which resembled that of human ARDS. (2) Serum levels of MBG in the “hyperoxic” rats substantially exceeded those obtained in animals exposed to ambient oxygen levels and were reduced to normal by RBG. (3) In ARDS patients, substantial elevations in urinary MBG were obtained compared to those in non-ARDS ICU patients.

Conclusions

MBG may serve as an important biomarker for the development of ARDS, and RBG may represent a preventative/therapy in this disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A life threatening disorder characterized by severe hypoxemia, dyspnea, and bilateral pulmonary opacities in radiographic and computed tomographic (CT) scans.

  2. An endogenous bufadienolide that regulates the ubiquitous Na+/K+ ATPase enzyme and is implicated in states characterized by volume expansion and increased vascular permeability.

  3. A pregnancy-specific disorder characterized by high blood pressure and proteinuria.

  4. A bufadienolide that is an antagonist of MBG and it is shown to prevent all of the manifestations of preeclampsia in a rat model.

Abbreviations

ARDS:

Acute Respiratory Distress Syndrome

MBG:

Marinobufagenin

RBG:

Resibufogenin

PE:

Preeclampsia

References

  1. Rubenfeld GD, Caldwell E, Peabody E et al (2005) Incidence and outcomes of acute lung injury. N Engl J Med 353(16):1685–1693. doi:10.1056/NEJMoa050333

    Article  CAS  PubMed  Google Scholar 

  2. Matthay MA, Zimmerman GA (2005) Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am J Respir Cell Mol Biol 33(4):319–327. doi:10.1165/rcmb.F305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Invest 122(8):2731–2740. doi:10.1172/JCI60331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Blondonnet R, Constantin JM, Sapin V et al (2016) A pathophysiologic approach to biomarkers in acute respiratory distress syndrome. Dis Markers 2016:3501373. doi:10.1155/2016/3501373

    Article  PubMed  PubMed Central  Google Scholar 

  5. Doyle RL, Szaflarski N, Modin GW et al (1995) Identification of patients with acute lung injury. Predictors of mortality. Am J Respir Crit Care Med. doi:10.1164/ajrccm.152.6.8520742

    Google Scholar 

  6. Sloane PJ, Gee MH, Gottlieb JE et al (1992) A multicenter registry of patients with acute respiratory distress syndrome: physiology and outcome. Am Rev Respir Dis 146(2):419–426. doi:10.1164/ajrccm/146.2.419

    Article  CAS  PubMed  Google Scholar 

  7. Heffner JE, Zamora CA (1990) Clinical predictors of prolonged translaryngeal intubation in patients with the adult respiratory distress syndrome. Chest 97(2):447–452

    Article  CAS  PubMed  Google Scholar 

  8. Fowler AA, Hamman RF, Good JT et al (1983) Adult respiratory distress syndrome: risk with common predispositions. Ann Intern Med 98(5 Pt 1):593–597

    Article  CAS  PubMed  Google Scholar 

  9. Hudson LD, Milberg JA, Anardi D et al. (1995) Clinical risks for development of the acute respiratory distress syndrome. Am J Respir Crit Care Med. doi:10.1164/ajrccm.151.2.7842182

    Google Scholar 

  10. Pepe PE, Potkin RT, Reus DH et al (1982) Clinical predictors of the adult respiratory distress syndrome. Am J Surg 144(1):124–130

    Article  CAS  PubMed  Google Scholar 

  11. Calfee CS, Eisner MD, Ware LB et al (2007) Trauma-associated lung injury differs clinically and biologically from acute lung injury due to other clinical disorders. Crit Care Med 35(10):2243–2250

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pelosi P, Brazzi L, Gattinoni L (2002) Prone position in acute respiratory distress syndrome. Eur Respir J 20(4):1017–1028

    Article  CAS  PubMed  Google Scholar 

  13. Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):637–645. doi:10.1001/jama.299.6.637

    Article  CAS  PubMed  Google Scholar 

  14. Ortiz-Diaz E, Festic E, Gajic O et al (2013) Emerging pharmacological therapies for prevention and early treatment of acute lung injury. Semin Respir Crit Care Med 34(4):448–458. doi:10.1055/s-0033-1351118

    Article  PubMed  Google Scholar 

  15. Bagrov AY, Fedorova OV (1998) Effects of two putative endogenous digitalis-like factors, marinobufagenin and ouabain, on the Na+, K+-pump in human mesenteric arteries. J Hypertens 16(12 Pt 2):1953–1958

    Article  CAS  PubMed  Google Scholar 

  16. Fedorova OV, Kolodkin NI, Agalakova NI et al (2001) Marinobufagenin, an endogenous alpha-1 sodium pump ligand, in hypertensive Dahl salt-sensitive rats. Hypertension 37(2 Pt 2):462–466

    Article  CAS  PubMed  Google Scholar 

  17. Pamnani MB, Chen S, Yuan CM et al. (1994) Chronic blood pressure effects of bufalin, a sodium-potassium ATPase inhibitor, in rats. Hypertension 23 (1 Suppl):I106–109**

    Article  CAS  PubMed  Google Scholar 

  18. Schoner W (2002) Endogenous cardiac glycosides, a new class of steroid hormones. Eur J Biochem 269(10):2440–2448

    Article  CAS  PubMed  Google Scholar 

  19. Uddin MN, Horvat D, Childs EW et al (2009) Marinobufagenin causes endothelial cell monolayer hyperpermeability by altering apoptotic signaling. Am J Physiol Regul Integr Comp Physiol 296(6):R1726–R1734. doi:10.1152/ajpregu.90963.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ing NH, Berghman L, Abi-Ghanem D et al (2014) Marinobufagenin regulates permeability and gene expression of brain endothelial cells. Am J Physiol Regul Integr Comp Physiol 306(12):R918–R924. doi:10.1152/ajpregu.00499.2013

    Article  CAS  PubMed  Google Scholar 

  21. Vu HV, Ianosi-Irimie MR, Pridjian CA et al (2005) Involvement of marinobufagenin in a rat model of human preeclampsia. Am J Nephrol 25(5):520–528. doi:10.1159/000088461

    Article  CAS  PubMed  Google Scholar 

  22. Pugin J, Verghese G, Widmer MC et al (1999) The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit Care Med 27(2):304–312

    Article  CAS  PubMed  Google Scholar 

  23. Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349. doi:10.1056/NEJM200005043421806

    Article  CAS  PubMed  Google Scholar 

  24. Matthay MA, Zimmerman GA, Esmon C et al (2003) Future research directions in acute lung injury: summary of a National Heart, Lung, and Blood Institute working group. Am J Respir Crit Care Med 167(7):1027–1035. doi:10.1164/rccm.200208-966WS

    Article  PubMed  Google Scholar 

  25. Horvat D, Severson J, Uddin MN et al (2010) Resibufogenin prevents the manifestations of preeclampsia in an animal model of the syndrome. Hypertens Pregnancy 29(1):1–9. doi:10.3109/10641950802629709

    Article  CAS  PubMed  Google Scholar 

  26. Puschett JB (2012) Marinobufagenin predicts and resibufogenin prevents preeclampsia: a review of the evidence. Am J Perinatol 29(10):777–785. doi:10.1055/s-0032-1316447

    Article  PubMed  Google Scholar 

  27. Folkesson HG, Matthay MA (2006) Alveolar epithelial ion and fluid transport: recent progress. Am J Respir Cell Mol Biol 35(1):10–19. doi:10.1165/rcmb.2006-0080SF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson MD, Bao HF, Helms MN et al (2006) Functional ion channels in pulmonary alveolar type I cells support a role for type I cells in lung ion transport. Proc Natl Acad Sci U S A 103(13):4964–4969. doi:10.1073/pnas.0600855103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fang X, Fukuda N, Barbry P et al (2002) Novel role for CFTR in fluid absorption from the distal airspaces of the lung. J Gen Physiol 119(2):199–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Force ADT, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307(23):2526–2533. doi:10.1001/jama.2012.5669

    Google Scholar 

  31. Abi-Ghanem D, Lai X, Berghman LR et al (2011) A chemifluorescent immunoassay for the determination of marinobufagenin in body fluids. J Immunoass Immunochem 32(1):31–46. doi:10.1080/15321819.2010.538107

    Article  CAS  Google Scholar 

  32. Moorthy B, Parker KM, Smith CV et al (2000) Potentiation of oxygen-induced lung injury in rats by the mechanism-based cytochrome P-450 inhibitor, 1-aminobenzotriazole. J Pharmacol Exp Ther 292(2):553–560

    CAS  PubMed  Google Scholar 

  33. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342(18):1301–1308. doi:10.1056/NEJM200005043421801

    Article  Google Scholar 

  34. Pelosi P, Tubiolo D, Mascheroni D et al (1998) Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am J Respir Crit Care Med 157(2):387–393. doi:10.1164/ajrccm.157.2.97-04023

    Article  CAS  PubMed  Google Scholar 

  35. Mure M, Martling CR, Lindahl SG (1997) Dramatic effect on oxygenation in patients with severe acute lung insufficiency treated in the prone position. Crit Care Med 25(9):1539–1544

    Article  CAS  PubMed  Google Scholar 

  36. Blanch L, Mancebo J, Perez M et al (1997) Short-term effects of prone position in critically ill patients with acute respiratory distress syndrome. Intensive Care Med 23(10):1033–1039

    Article  CAS  PubMed  Google Scholar 

  37. Mercat A, Richard JC, Vielle B et al (2008) Positive end-expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6):646–655. doi:10.1001/jama.299.6.646

    Article  CAS  PubMed  Google Scholar 

  38. Briel M, Meade M, Mercat A et al (2010) Higher vs lower positive end-expiratory pressure in patients with acute lung injury and acute respiratory distress syndrome: systematic review and meta-analysis. JAMA 303(9):865–873. doi:10.1001/jama.2010.218

    Article  CAS  PubMed  Google Scholar 

  39. Ferguson ND, Cook DJ, Guyatt GH et al (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368(9):795–805. doi:10.1056/NEJMoa1215554

    Article  CAS  PubMed  Google Scholar 

  40. Young D, Lamb SE, Shah S et al (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 368(9):806–813. doi:10.1056/NEJMoa1215716

    Article  CAS  PubMed  Google Scholar 

  41. Zapol WM, Snider MT, Hill JD et al (1979) Extracorporeal membrane oxygenation in severe acute respiratory failure: a randomized prospective study. JAMA 242(20):2193–2196

    Article  CAS  PubMed  Google Scholar 

  42. Manktelow C, Bigatello LM, Hess D et al (1997) Physiologic determinants of the response to inhaled nitric oxide in patients with acute respiratory distress syndrome. Anesthesiology 87(2):297–307

    Article  CAS  PubMed  Google Scholar 

  43. Meade MO, Cook DJ, Griffith LE et al (2008) A study of the physiologic responses to a lung recruitment maneuver in acute lung injury and acute respiratory distress syndrome. Respir Care 53(11):1441–1449

    PubMed  Google Scholar 

  44. Filippatos GS, Hughes WF, Qiao R et al (1997) Mechanisms of liquid flux across pulmonary alveolar epithelial cell monolayers. In Vitro Cell Dev Biol Anim 33(3):195–200. doi:10.1007/s11626-997-0141-z

    Article  CAS  PubMed  Google Scholar 

  45. Goodman BE, Fleischer RS, Crandall ED (1983) Evidence for active Na+ transport by cultured monolayers of pulmonary alveolar epithelial cells. Am J Physiol 245(1):C78–C83

    CAS  PubMed  Google Scholar 

  46. Mason RJ, Williams MC, Widdicombe JH et al (1982) Transepithelial transport by pulmonary alveolar type II cells in primary culture. Proc Natl Acad Sci U S A 79(19):6033–6037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Matalon S, Benos DJ, Jackson RM (1996) Biophysical and molecular properties of amiloride-inhibitable Na+ channels in alveolar epithelial cells. Am J Physiol 271(1 Pt 1):L1–L22

    CAS  PubMed  Google Scholar 

  48. Matthay MA, Folkesson HG, Verkman AS (1996) Salt and water transport across alveolar and distal airway epithelia in the adult lung. Am J Physiol 270(4 Pt 1):L487–L503

    CAS  PubMed  Google Scholar 

  49. Borok Z, Liebler JM, Lubman RL et al (2002) Na transport proteins are expressed by rat alveolar epithelial type I cells. Am J Physiol Lung Cell Mol Physiol 282(4):L599–L608. doi:10.1152/ajplung.00130.2000

    Article  CAS  PubMed  Google Scholar 

  50. Johnson MD, Widdicombe JH, Allen L et al (2002) Alveolar epithelial type I cells contain transport proteins and transport sodium, supporting an active role for type I cells in regulation of lung liquid homeostasis. Proc Natl Acad Sci U S A 99(4):1966–1971. doi:10.1073/pnas.042689399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ridge KM, Rutschman DH, Factor P et al (1997) Differential expression of Na-K-ATPase isoforms in rat alveolar epithelial cells. Am J Physiol 273(1 Pt 1):L246–L255

    CAS  PubMed  Google Scholar 

  52. Danchuk S, Sukhanov S, Horvat D et al (2008) Effects of resibufogenin in experimental hypertension. Am J Nephrol 28(1):8–13. doi:10.1159/000108756

    Article  CAS  PubMed  Google Scholar 

  53. Fedorova OV, Simbirtsev AS, Kolodkin NI et al (2008) Monoclonal antibody to an endogenous bufadienolide, marinobufagenin, reverses preeclampsia-induced Na/K-ATPase inhibition and lowers blood pressure in NaCl-sensitive hypertension. J Hypertens 26(12):2414–2425. doi:10.1097/HJH.0b013e328312c86a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fridman AI, Matveev SA, Agalakova NI et al (2002) Marinobufagenin, an endogenous ligand of alpha-1 sodium pump, is a marker of congestive heart failure severity. J Hypertens 20(6):1189–1194

    Article  CAS  PubMed  Google Scholar 

  55. Bagrov AY, Fedorova OV, Dmitrieva RI et al (1998) Characterization of a urinary bufodienolide Na+, K+-ATPase inhibitor in patients after acute myocardial infarction. Hypertension 31(5):1097–1103

    Article  CAS  PubMed  Google Scholar 

  56. Davis EF, Lazdam M, Lewandowski AJ et al (2012) Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics 129(6):e1552–e1561. doi:10.1542/peds.2011-3093

    Article  PubMed  Google Scholar 

  57. Tian J, Haller S, Periyasamy S et al (2010) Renal ischemia regulates marinobufagenin release in humans. Hypertension 56(5):914–919. doi:10.1161/HYPERTENSIONAHA.110.155564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Uddin MN, McLean LB, Hunter FA et al (2009) Vascular leak in a rat model of preeclampsia. Am J Nephrol 30(1):26–33. doi:10.1159/000193220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Brown MA, Zammit VC, Lowe SA (1989) Capillary permeability and extracellular fluid volumes in pregnancy-induced hypertension. Clin Sci 77(6):599–604

    Article  CAS  PubMed  Google Scholar 

  60. LaMarca HL, Morris CA, Pettit GR et al (2006) Marinobufagenin impairs first trimester cytotrophoblast differentiation. Placenta 27(9–10):984–988. doi:10.1016/j.placenta.2005.12.004

    Article  CAS  PubMed  Google Scholar 

  61. Bagrov AY, Fedorova OV, Austin-Lane JL et al (1995) Endogenous marinobufagenin-like immunoreactive factor and Na+, K + ATPase inhibition during voluntary hypoventilation. Hypertension 26(5):781–788

    Article  CAS  PubMed  Google Scholar 

  62. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides: their roles in hypertension, salt metabolism, and cell growth. Am J Physiol Cell Physiol 293(2):C509–C536. doi:10.1152/ajpcell.00098.2007

    Article  CAS  PubMed  Google Scholar 

  63. Vadasz I, Raviv S, Sznajder JI (2007) Alveolar epithelium and Na, K-ATPase in acute lung injury. Intensive Care Med 33(7):1243–1251. doi:10.1007/s00134-007-0661-8

    Article  CAS  PubMed  Google Scholar 

  64. Mutlu GM, Sznajder JI (2005) Mechanisms of pulmonary edema clearance. Am J Physiol Lung Cell Mol Physiol 289(5):L685–L695. doi:10.1152/ajplung.00247.2005

    Article  CAS  PubMed  Google Scholar 

  65. Lecuona E, Trejo HE, Sznajder JI (2007) Regulation of Na, K-ATPase during acute lung injury. J Bioenerg Biomembr 39(5–6):391–395. doi:10.1007/s10863-007-9102-1

    Article  CAS  PubMed  Google Scholar 

  66. Bachofen M, Weibel ER (1982) Structural alterations of lung parenchyma in the adult respiratory distress syndrome. Clin Chest Med 3(1):35–56

    CAS  PubMed  Google Scholar 

  67. Bachofen M, Weibel ER (1977) Alterations of the gas exchange apparatus in adult respiratory insufficiency associated with septicemia. Am Rev Respir Dis 116(4):589–615. doi:10.1164/arrd.1977.116.4.589

    Article  CAS  PubMed  Google Scholar 

  68. Donnelly SC, Haslett C, Reid PT et al (1997) Regulatory role for macrophage migration inhibitory factor in acute respiratory distress syndrome. Nat Med 3(3):320–323

    Article  CAS  PubMed  Google Scholar 

  69. Dedhia HV, Ma JY, Vallyathan V et al (1993) Exposure of rats to hyperoxia: alteration of lavagate parameters and macrophage function. J Toxicol Environ Health 40(1):1–13. doi:10.1080/15287399309531772

    Article  CAS  PubMed  Google Scholar 

  70. Nakos G, Kitsiouli EI, Tsangaris I et al (1998) Bronchoalveolar lavage fluid characteristics of early intermediate and late phases of ARDS. Alterations in leukocytes, proteins, PAF and surfactant components. Intensive Care Med 24(4):296–303

    Article  CAS  PubMed  Google Scholar 

  71. Uddin MN, Horvat D, Glaser SS, Mitchell BM, Puschett JB (2008) Examination of the cellular mechanisms by which marinobufagenin inhibits cytotrophoblasts function. J Biol Chem 283:17946–17953

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

These studies were supported by the Texas A&M University College of Veterinary Medicine and Biosciences, College Station, Texas and the Jules B. Puschett Research Endowment Fund, Houston, Texas. All the authors take responsibility for the accuracy of the data presented in this manuscript: All of them have read the manuscript prior to submission for publication. Mr. Abbas and Dr. Puschett wrote the majority of the paper which was approved by the other co-authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to B. Moorthy or J. B. Puschett.

Ethics declarations

Conflict of interest

Dr. Puschett has an equity interest in Bufogen, LLC and no other conflicts of interest. We did get permission from the Texas A&M Animal Use committee, the Baylor IRB as well as the Human Use Committee at the Baylor College of Medicine, the Texas Children’s Hospital, Houston, TX and the University of Texas-Houston/ Memorial Hermann Hospital-Human Use Committee.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed written consent was obtained from all patients involved in this study.

Additional information

Notation of prior abstract presentation: The observations in this manuscript have been presented in abstract form at a conference, Experimental Biology 2016 held in San Diego on the 4th of April, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, M.M.K., Patel, B., Chen, Q. et al. Involvement of the Bufadienolides in the Detection and Therapy of the Acute Respiratory Distress Syndrome. Lung 195, 323–332 (2017). https://doi.org/10.1007/s00408-017-9989-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-017-9989-1

Keywords

Navigation