Skip to main content
Log in

Changes in Pulmonary Function and Controlled Ventilation-High Resolution CT of Chest After Antibiotic Therapy in Infants and Young Children with Cystic Fibrosis

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Infants with cystic fibrosis (CF) develop early progressive lung disease which may be asymptomatic. Infant pulmonary function tests (IPFT) and controlled ventilation-high resolution computed tomography (CV-HRCT) of chest can detect early asymptomatic lung disease. It is not well established that these objective measures can detect changes in lung disease after clinical interventions.

Objective

The purpose of this study was to evaluate usefulness of IPFT and CV-HRCT to detect changes in lung disease after intravenous (IV) antibiotic therapy in infants with early CF-related lung disease.

Study Design

IPFTs and CV-HRCT done before and after 2 weeks of IV antibiotics in infants at our institution over the last 12 years were compared. CV-HRCTs were compared using the modified Brody scoring system.

Results

The sample included 21 infants, mean age 85.2 ± 47.6 weeks. Mean change in weight was 0.4 ± 0.38 kg (p = 0.001). Significant changes in IPFT included mean % predicted FEV0.5 (+13.5 %, p = 0.043), mean %FEF25–75 (+30.2 %, p = 0.008), mean %RV/TLC (−11.2 %, p = 0.008), and mean %FRC/TLC (−4.5 %, p = 0.001). Total Brody scores improved from a median of 10 to 5 (p < 0.001) as did mean scores for airway wall thickening (p = 0.050), air trapping (p < 0.001), and parenchymal opacities (p = 0.003).

Conclusion

IPFT and CV-HRCT can be used as objective measures of improvement in lung disease for infants with CF treated with antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CF:

Cystic fibrosis

cm H2O:

Centimeters of water

CV-HRCT:

Controlled ventilation-high resolution computed tomography

FEF25–75 :

Forced expiratory flow between 25 and 75 % of expired vital capacity

FEV0.5 :

Forced expiratory volume in 0.5 s

FRC:

Functional residual capacity

FVC:

Forced vital capacity

IPFT:

Infant pulmonary function test

RV:

Residual volume

TLC:

Total lung capacity

References

  1. Redding GJ, Restuccia R, Cotton EK et al (1982) Serial changes in pulmonary functions in children hospitalized with cystic fibrosis. Am Rev Respir Dis 126:31–36

    CAS  PubMed  Google Scholar 

  2. Rosenberg SM, Schramm CM (1993) Predictive value of pulmonary function testing during pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol 16:227–235

    Article  CAS  PubMed  Google Scholar 

  3. Gozal D, Bailey SL, Keens TG (1993) Evolution of pulmonary function during an acute exacerbation in hospitalized patients with cystic fibrosis. Pediatr Pulmonol 16:347–353

    Article  CAS  PubMed  Google Scholar 

  4. Bradley JM, Wallace ES, Elborn JS et al (1999) An audit of the effect of intravenous antibiotic treatment on spirometric measures of pulmonary function in cystic fibrosis. Ir J Med Sci 168:25–28

    Article  CAS  PubMed  Google Scholar 

  5. Feher A, Castile R, Kisling J et al (1996) Flow limitation in normal infants; a new method for forced expiratory maneuvers from raised lung volumes. J Appl Physiol 80:2019–2025

    Article  CAS  PubMed  Google Scholar 

  6. Tepper R, Morgan W, Cota K, GHMA pediatricians et al (1986) Physiologic growth and development of the lung during the first year of life. Am Rev Respir Dis 134:513–519

    CAS  PubMed  Google Scholar 

  7. Jones M, Castile R, Davis S et al (2000) Forced expiratory flows and volumes in infants. Normative data and lung growth. Am J Respir Crit Care Med 161:353–359

    Article  CAS  PubMed  Google Scholar 

  8. Lum S, Stocks J, Castile R et al (2005) ATS/ERS statement: raised volume forced expirations in infants: guidelines for current practice. Am J Respir Crit Care Med 172:1463–1471

    Article  Google Scholar 

  9. Castile R, Filbrun D, Flucke R et al (2000) Adult-type pulmonary function tests in infants without respiratory disease. Pediatr Pulmonol 30:215–227

    Article  CAS  PubMed  Google Scholar 

  10. Stocks J, Godfrey S, Beardsmore C et al (2001) Plethysmographic measurements of lung volume and airway resistance. ERS/ATS task force on standards for infant respiratory function testing. European Respiratory Society/American Thoracic Society. Eur Respir J 17:302–312

    Article  CAS  PubMed  Google Scholar 

  11. Davis SD, Brody AS, Emond MJ et al (2007) Endpoints for clinical trials in young children with cystic fibrosis. Proc Am Thorac Soc 4:418–430

    Article  PubMed Central  PubMed  Google Scholar 

  12. Davis SD, Rosenfeld M, Kerby GS et al (2010) Multicenter evaluation of infant lung function tests as cystic fibrosis clinical trial endpoints. Am J Respir Crit Care Med 182:1387–1397

    Article  PubMed Central  PubMed  Google Scholar 

  13. Pittman JE, Johnson RC, Davis SD (2012) Improvement in pulmonary function following antibiotics in infants with cystic fibrosis. Pediatr Pulmonol 47(5):441–446

    Article  PubMed  Google Scholar 

  14. Davis SD, Fordham LA, Brody AS et al (2007) Computed tomography reflects lower airway inflammation and tracks changes in early cystic fibrosis. Am J Respir Crit Care Med 175:943–950

    Article  PubMed  Google Scholar 

  15. Stick SM, Brennan S, Murray C et al (2009) Bronchiectasis in infants and preschool children diagnosed with cystic fibrosis after newborn screening. J Pediatr 155(623–628):e621

    Google Scholar 

  16. Long FR, Williams RS, Castile RG (2004) Structural airway abnormalities in infants and young children with cystic fibrosis. J Pediatr 144:154–161

    Article  PubMed  Google Scholar 

  17. Long FR, Castile RG (2001) Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 31:413–422

    Article  CAS  PubMed  Google Scholar 

  18. Long FR, Williams RS, Adler BH et al (2005) Comparison of quiet breathing and controlled ventilation in the high-resolution CT assessment of airway disease in infants with cystic fibrosis. Pediatr Radiol 35:1075–1080

    Article  PubMed  Google Scholar 

  19. de Jong PA, Nakano Y, Hop WC et al (2005) Changes in airway dimensions on computed tomography scans of children with cystic fibrosis. Am J Respir Crit Care Med 172:218–224

    Article  PubMed  Google Scholar 

  20. Sly PD, Gangell CL, Chen L et al (2013) AREST CF Investigators. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med 368(21):1963–1970

    Article  CAS  PubMed  Google Scholar 

  21. de Jong PA, Nakano Y, Lequin MH et al (2004) Progressive damage on high resolution computed tomography despite stable lung function in cystic fibrosis. Eur Respir J 23:93–97

    Article  PubMed  Google Scholar 

  22. Mott LS, Park J, Murray CP et al (2012) Progression of early structural lung disease in young children with cystic fibrosis assessed using CT. Thorax 67:509–516

    Article  PubMed  Google Scholar 

  23. Sly PD, Brennan S, Gangell C et al (2009) Lung disease at diagnosis in infants with cystic fibrosis detected by newborn screening. Am J Respir Crit Care Med 180:146–152

    Article  PubMed  Google Scholar 

  24. Martinez TM, Llapur CJ, Williams TH et al (2005) High-resolution computed tomography imaging of airway disease in infants with cystic fibrosis. Am J Respir Crit Care Med 172:1133–1138

    Article  PubMed Central  PubMed  Google Scholar 

  25. Long FR, Castile RG, Brody AS et al (1999) Lungs in infants and young children: improved thin-section CT with a noninvasive controlled-ventilation technique–initial experience. Radiology 212(2):588–593

    Article  CAS  PubMed  Google Scholar 

  26. Brody AS, Sucharew H, Campbell JD et al (2005) Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis. Am J Respir Crit Care Med 172(9):1128–1132

    Article  PubMed  Google Scholar 

  27. Thia LP, Calder A, Stocks J, London Cystic Fibrosis Collaboration et al (2014) Is chest CT useful in newborn screened infants with cystic fibrosis at 1 year of age? Thorax 69(4):320–327. doi:10.1136/thoraxjnl-2013-204176

    Article  PubMed Central  PubMed  Google Scholar 

  28. Mott LS, Graniel KG, Park J, AREST CF et al (2013) Assessment of early bronchiectasis in young children with cystic fibrosis is dependent on lung volume. Chest 144(4):1193–1198. doi:10.1378/chest.12-2589

    Article  PubMed  Google Scholar 

  29. Ranganathan SC, Parsons F, Gangell C et al (2011) Evolution of pulmonary inflammation and nutritional status in infants and young children with cystic fibrosis. Thorax 66:408–413

    Article  PubMed  Google Scholar 

  30. Pillarisetti N, Williamson E, Linnane B et al (2011) Infection, inflammation, and lung function decline in infants with cystic fibrosis. Am J Respir Crit Care Med 184:75–81

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors report no conflicts of interests and have no relevant disclosures.

Funding

This study was not funded by any grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid I. Sheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, S.I., Long, F.R., Flucke, R. et al. Changes in Pulmonary Function and Controlled Ventilation-High Resolution CT of Chest After Antibiotic Therapy in Infants and Young Children with Cystic Fibrosis. Lung 193, 421–428 (2015). https://doi.org/10.1007/s00408-015-9706-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-015-9706-x

Keywords

Navigation