Skip to main content
Log in

Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850–1960), and beyond

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

The present article discusses the computational tools (both conceptual and material) used in various attempts to deal with individual cases of FLT, as well as the changing historical contexts in which these tools were developed and used, and affected research. It also explores the changing conceptions about the role of computations within the overall disciplinary picture of number theory, how they influenced research on the theorem, and the kinds of general insights thus achieved. After an overview of Kummer’s contributions and its immediate influence, I present work that favored intensive computations of particular cases of FLT as a legitimate, fruitful, and worth-pursuing number-theoretical endeavor, and that were part of a coherent and active, but essentially low-profile tradition within nineteenth century number theory. This work was related to table making activity that was encouraged by institutions and individuals whose motivations came mainly from applied mathematics, astronomy, and engineering, and seldom from number theory proper. A main section of the article is devoted to the fruitful collaboration between Harry S. Vandiver and Emma and Dick Lehmer. I show how their early work led to the hesitant introduction of electronic computers for research related with FLT. Their joint work became a milestone for computer-assisted activity in number theory at large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams John C. (1878), “Table of the values of the first sixty-two numbers of Bernoulli”. Jour. r. ang. Math. 85 1878 . 269–272

  • Adleman Len, Roger Heath-Brown (1985), “The First Case of Fermat’s Last Theorem”. Invent. Math. 79, 409–416

    Article  MathSciNet  MATH  Google Scholar 

  • Ankeny Nesmith, Sarvadaman Chowla (1949), “The Class Number of the Cyclotomic Field”. Proc. NAS 35(9): 529–532

    Article  MATH  Google Scholar 

  • Andree Richard V. (1962), A Table of Indices and Power Residues for all Primes and Prime Powers below 2000 (Introduction by H.S. Vandiver), New York, Norton.

  • Bachmann Paul (1910), Niedere Zahlentheorie Vol. 2, Berlin, Teubner.

  • Beeger NGWH (1925), “On the Congruence 2p-1 ≡ 1 (mod p 2) and Fermat’s Last Theorem”. Math. Messenger 55, 17–26

    Google Scholar 

  • Beeger NGWH (1939), “On the Congruence 2p-1 ≡ 1 (mod p 2) and Fermat’s Last Theorem”. Nieuw. Arch. Wiskunde 20, 51–54

    MathSciNet  MATH  Google Scholar 

  • Bernoulli Jakob (1731), Ars Conjecturandi, Basel. (Fragment reproduced in David E. Smith (ed.), A Source Book in Mathematics Dover Publications, New York, (1959, first edition 1929), Vol. 1, 85–90. Translated from the Latin by Jekuthiel Ginsburg.)

  • Bernstein Felix (1903), “Über den Klassenkörper eines algebraischen Zahlkörpers”, Göttingen Nachrichten 1903, 46–58 & 304–311

  • Bernstein Felix (1904) “Über unverzweigte Abelsche Körper (Klassenkörper) in einem imaginären Grundbereich”. Jahresb. DMV 13, 116–119

    MATH  Google Scholar 

  • Bernstein Felix (1910), “Ueber den letzten Fermat’schen Satz”. Göttingen Nachrichten 1910: 482–488

    Google Scholar 

  • Brandt Heinrich and Wilhelm Patz (1956), Canon Arithmeticus (K.G.J. Jacobi). Nach Berechnungen von Wilhelm Patz (In verb. und erweiterter Form neu hrsg. von. Heinrich Brandt), Berlin, Akademie-Verlag.

  • Brillhart John (1992), “John Derrick Henry Lehmer”. Acta Arithmetica 62, 207–213

    MathSciNet  MATH  Google Scholar 

  • Buhler J.P., Crandall R.E., Ernvall R., Metsänkylä T. (1993), “Irregular primes and cyclotomic invariants to four million”. Math. Comp. 61(1–2): 151–153

    Article  MathSciNet  MATH  Google Scholar 

  • Buhler J., Crandall R., Ernvall R., Metsänkylä T., Shokrollahi M. (2001), “Irregular primes and cyclotomic invariants to 12 million”. J. Symbolic Comput. 31, 89–96

    Article  MathSciNet  MATH  Google Scholar 

  • Bullialdus Ismael (1862), Opus Novum ad Arithmeticam Infinitorum, Paris.

  • Cahen Eugene (1925), Théorie des nombres. Cours de la Faculté des sciences de l’Université de Paris, Vol. 2: Le second degré binaire, Hermann, Paris.

  • Campbell-Kelly Martin et al (eds) (2003), The History of Mathematical Tables. From Sumer to Spreadsheets. Oxford, Oxford University Press

    MATH  Google Scholar 

  • Carlitz Leonard (1954), “A Note on Irregular Primes”. Proc. AMS 5, 329–331

    Article  MATH  Google Scholar 

  • Clausen Thomas (1840), “Theorem”. Astron. Nach. 17, 351–352

    Google Scholar 

  • Corry Leo (2004), Modern Algebra and the Rise of Mathematical Structures, Basel and Boston, Birkhäuser (Second, revised edition).

  • Corry Leo (2007), “Fermat Comes to America: Harry Schultz Vandiver and FLT (1914–1963), Mathematical. Intelligencer 29(3)(2007):30–40

    Google Scholar 

  • Corry Leo (2007a), “FLT Meets SWAC: Vandiver, the Lehmers, Computers and Number Theory”, IEEE Annals of History of Computing. (Forthcoming).

  • Corry, Leo (Forthcoming) “On the History of Fermat’s Last Theorem: A Down-to-Earth Approach”.

  • Croarken Mary (1990), Early Scientific Computing in Britain. Oxford, Clarendon Press

    MATH  Google Scholar 

  • Croarken Mary (2003), “Table Making by Committee; British Table Makers, 1871–1965”, in Campbell-Kelly et al (eds.) (2003), 235–263

  • Croarken Mary, Martin Campbell-Kelly (2000), “Beautiful Numbers: The Rise and Decline of the British Association Mathematical Tables Committee. 1871–1965”. IEEE Annals for History of Computing 22(4): 44–61

    Article  Google Scholar 

  • Cunningham Allan J.C. (1899), A Binary Canon Showing Residues of Powers of 2 for Divisors under 1000, and Indices to Residues. London, Taylor and Francis

    Google Scholar 

  • Cunningham Allan J.C. (1904), Quadratic Partitions. London, F Hodgson

    Google Scholar 

  • Cunningham Allan J.C. (1905), “Haupt-exponents of 2”. Quart. Jour. Math. 42, 241–250

    Google Scholar 

  • Cunningham Allan J.C. (1917), Quadratic and Linear Tables. Hodgson, London

    Google Scholar 

  • Davis Harold T. (1935), Tables of the Mathematical Functions, San Antonio, The Principia Press (2nd revised edition: 1963).

  • Del Centina Andrea (2007), “Unpublished Manuscripts of Sophie Germain and a Reevaluation of her Work on Fermat’s Last Theorem”, Arch. History Exact Sci. (DOI: http://10.1007/s00407-007-0016-4).

  • Dickson Leonard E. (1908), “On the Last Theorem of Fermat”. Quart. Jour. Math. 40, 27–45

    Google Scholar 

  • Dickson Leonard E. (1908a), “On the Last Theorem of Fermat”. Math. Messenger 38, 14–32

    Google Scholar 

  • Dickson Leonard E. (1909), “On the Last Theorem of Fermat”, Proceedings ICM Rome Vol. 2, 172

  • Dickson Leonard E. (1919), History of the Theory of Numbers, 3 Vols. New York, Chelsea

    Google Scholar 

  • Dickson Leonard E. (1933), Minimum Decomposition into Fifth Powers. Mathematical Tables, British Assoc. for the Advancement of Science, Vol. 3, (Committee for the Calculation of Mathematical Tables), London, Office of the British Association.

  • Edmondson Joseph (1885), “Summary of Lecture on Calculating Machines”. Proc. Phys. Soc. London 7(1): 81–85

    Article  Google Scholar 

  • Edwards Harold M. (1975), “The Background of Kummer’s Proof of Fermat’s Last Theorem for Regular Primes”. Arch. Hist. Ex. Sci. 14, 219-236

    Article  MATH  Google Scholar 

  • Edwards Harold M. (1977), Fermat’s Last Theorem. A Genetic Introduction to Algebraic Number Theory. New York, Springer

    MATH  Google Scholar 

  • Edwards Harold M. (1977a), “Postscript to: ‘The background of Kummer’s proof of Fermat’s last theorem for regular primes”’. Arch. His. Ex. Sci. 17, 381–394

    Article  Google Scholar 

  • Edwards Harold M. (2007), “About the Cover: Kummer’s Tables”. Bull. AMS 44(1): 133–135

    Article  Google Scholar 

  • Eisenstein Ferdinand G. (1850), “Beweis der allgemeinsten Reciprocitätsgesetze zwischen reellen und complexen Zahlen”, Monatsberichte BA 189–198

  • Ely G.S. (1882), “Bibliography of Bernoulli Numbers”. Am. J. Math. 5, 228–235

    Article  MathSciNet  Google Scholar 

  • Folkerts Menso and Olaf Neumann (eds.) (2006), Der Briefwechsel Zwischen Kummer und Reuschle (Algorismus 50), Augsburg, Dr. Erwin Rauner Verlag.

  • Forsyth Andrew R. (1929), “James Whitbread Lee Glaisher”. J. London Math. Soc. 4, 101–112

    Article  Google Scholar 

  • Fouvry Étienne (1985), “Theorem de Brun-Titchmarsh- application au théorème de Fermat”. Invent. Math. 79, 383–407

    Article  MathSciNet  MATH  Google Scholar 

  • Frobenius Ferdinand Georg (1914), “Über den Fermat’schen Satz. III”. Berlin Ber. (1914), 653–681

  • Furtwängler Philip (1912), “Letzter Fermatscher Satz und Eisensteinsches Reziprozitätsprinzip", Wien. Ber. 121, 589–592. (DOI: 10.1007/s00407-007-0016-4)

  • Glaisher John W. (1878), “On factor Tables ...”. Proceedings of the Cambridge Philosophical Society 3, 1878: 99–138

    Google Scholar 

  • Goldstein Catherine (1994), “La théorie des nombres dans les notes aux Comptes Rendus de l’Academie des Sciences (1870–1914): un premier examen”. Riv. Stor. Sci. 2, 137–160

    MathSciNet  Google Scholar 

  • Goldstein, Catherine and Norbert Schappacher (2007), “Several Disciplines and a Book (1860–1901)”, in Goldstein, Catherine, Norbert Schappacher and Joachim Schwermer, (eds.) (2007), The Shaping of Arithmetic after C.F. Gauss’s Disquisitiones Arithmeticae. New York, Springer.

  • Gottschalk Eugen (1938), “Zum Fermatschen Problem”. Math. Ann. 115, 157–158

    Article  MathSciNet  Google Scholar 

  • Granville Andrew, Michael B. Monagan (1988), “ The First Case of Fermat’s Last Theorem is True for all Prime Exponents up to 714,591,416,091,389”. Trans. AMS 306, 329–359

    Article  MATH  Google Scholar 

  • Grier David A. (2005), When Computers Were Human. Princeton, Princeton University Press

    Google Scholar 

  • Gunderson N.G. (1948), Derivation of criteria for the first case of Fermat’s last theorem and the combination of these criteria to produce a new lower bound for the exponent (PhD Thesis, Cornell University).

  • Havil Julian (2003), Gamma. Exploring Euler’s Constant. Princeton, Princeton University Press

    MATH  Google Scholar 

  • Hecke Erich (1910), “Ueber nicht-reguläre Primzahlen und den Fermat’schen Satz”. Göttingen Nachrichten 1910: 420–424

    Google Scholar 

  • Hellegouarch Yves (1972), Courbes Elliptiques et Équation de Fermat, Thèse, Université Besançon.

  • Hilbert David (1998), The Theory of Algebraic Number Fields. Berlin, Springer. (English translation of the German original by F. Lemmermeyer and N. Schappacher.)

  • Huskey Howard D. (1997), “SWAC-Standards Western Automatic Computer”. Annals of the History of Computing 19, 51–61

    Article  Google Scholar 

  • Huskey Howard D. et al. (1997), “The SWAC Design Features and Operating Experience”. Annals of the History of Computing 19, 46–50

    Article  Google Scholar 

  • Inkeri Kusta (1947), “Über den Euklidischen Algorithmus in quadratischen Zahlkörpern”. Ann. Acad. Sci. Fennicae Ser. A. 1. Math.-Phys. 41, 1–35

    MathSciNet  Google Scholar 

  • Iwasawa Kenkichi, Charles Sims (1965), “Computation of Invariants in the Theory of Cyclotomic Fields”. J. Math. Soc. Japan 18, 86–96

    Article  Google Scholar 

  • Jacobi Karl G.J. (1839) Canon Arithmeticus sive Tabulae quibus exhibentur pro Singulis Numeris Primis vel Primorum Potestatibus infra 1000 Numeri ad Datos Indices et Indices ad Datos Numeros pertinentes. Berlin, Typis Academicis.

    Google Scholar 

  • Jensen Kaj Løchte (1915), “Om talteoretiske Egenskaber ved de Bernoulliske Tal”. Nyt Tidsskrift for Matematik 26, 73–83

    Google Scholar 

  • Johnson Wells (1975), “Irregular primes and cyclotomic invariants”, Math. Comp. 29 (Special Issue: A Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday), 113–120

  • Kummer Ernst E. (Coll), Collected Papers 2 Vols., ed. by André Weil, New York, Springer (1975).

  • Kummer Ernst E. (1844), De numeris complexis, qui radicibus unitatis et numeris integris realibus constant. Gratulationschrift der Univ. Breslau zur Jubelfeier der Univ. Königsberg, Reprinted in Jour. math. p. appl. 12 (1847), 185–212. (Coll Vol. 1, 165–192.)

  • Kummer Ernst E. (1847), “Zur Theorie der complexen Zahlen”, Jour. r. ang. Math. 35, 319–326. (Coll Vol. 1, 203–210.)

  • Kummer Ernst E. (1847a), “Beweis des Fermat’schen Satzes ...”, Monatsberichte BA 132–141 & 305–319. (Coll Vol. 1, 274–297.)

  • Kummer Ernst E. (1850), “Allgemeine Reciprocitätsgesetze für beliebige höhere Potenzreste”, Monatsberichte BA 154–165. (Coll Vol. 1, 347–357.)

  • Kummer Ernst E. (1850a), “Allgemeiner Beweis des Fermat’schen Satzes, ...”, Jour. r. ang. Math. 40, 130–138. (Coll. Vol. 1, 336–344.)

  • Kummer Ernst E. (1851), “Mémoire sur la théorie des nombres complexes composés de racines de l’unite et de nombres entiers”, Jour. math. p. appl. 16, 377–498. (Coll Vol. 1, 363–484.)

  • Kummer Ernst E. (1857), “Einige Sätze über die aus den Wurzeln der Gleichung ...”, Abh. BA 1857, 41–74. (Coll Vol. 1, 639–672.)

  • Kummer Ernst E. (1859), “Über die allgemeinen Reciprocitätsgesetze unter den Resten und Nichtresten der Potenzen deren Grad eine Primzahl ist”, Abh. BA 19–159. (Coll Vol.1, 699–839.)

  • Landau Edmund (1913), “Une série de réponses”. L’intermediaire des mathematiciens 20, 206

    Google Scholar 

  • Lang Serge (1978), Cyclotomic Fields. New York, Springer

    MATH  Google Scholar 

  • Laubenbacher Reinhard, David Pengelley (1999), Mathematical Expeditions, Chronicles by the Explorers. New York, Springer

    MATH  Google Scholar 

  • Lehmer Emma (1956) “Number Theory on the SWAC”. Proc. Symp. Applied Math. 6, AMS, 103–108

  • Lehmer Emma, Derrick H. Lehmer (1941), “On the first case of Fermat’s last theorem”. Bull. AMS 47, 139–142

    Article  Google Scholar 

  • Lehmer Derrick H. (1932), “A note on Fermat’s last theorem”. Bull. AMS 38, 723–24

    Article  Google Scholar 

  • Lehmer Derrick H. (1933), “A photo-electric number-sieve”. Amer. Math. Monthly 40, 401–406

    Article  MathSciNet  Google Scholar 

  • Lehmer Derrick H. (1935), “Lacunary recurrence formulas for the numbers of Bernoulli and Euler”. Ann. Math. 36, 637–648

    Article  Google Scholar 

  • Lehmer Derrick H. (1936), “An extension of the table of Bernoulli numbers”. Duke Math. J. 2, 460–464

    Article  MathSciNet  Google Scholar 

  • Lehmer Derrick H. (1940), “On the Maxima and Minima of Bernoulli Polynomials”. Am. Math. Mo. 47(8): 533–538

    Article  Google Scholar 

  • Lehmer Derrick H. (1940a), “The lattice points of an n-dimensional tetrahedron”. Duke Math. J. 7, 341–353

    Article  MathSciNet  Google Scholar 

  • Lehmer Derrick H. (1953), “The sieve problem for all purpose computers”. Math. Tables and Other Aids to Computation 7, 6–14

    Article  MathSciNet  Google Scholar 

  • Lehmer Derrick Norman (1909), Factor table for the first ten millions, containing the smallest factor of every number not divisible by 2, 3, 5, or 7 between the limits 0 and 10017000 Washington Carnegie Institution of Washington.

  • Lehmer Derrick Norman (1914), List of prime numbers from 1 to 10 006 721, Washington, Carnegie Institution of Washington.

  • Lehmer Derrick Norman (1939), Factor Stencils, (Revised and extended by J. D. Elder) Washington, Carnegie Institution of Washington.

  • Maillet Edmond (1897), “Sur l’équation indéterminée ax λ t  +  by λ t  =  cz λ t”. Assoc. Francaise St. Etienne 26, 156–168

    Google Scholar 

  • Meissner Waldemar (1913), “Über die Teilbarkeit von 2p-2 durch das Quadrat der Primzahl p = 1093”. Berl. Ber. 1913: 663–667

    Google Scholar 

  • Miller J.C.P. (1963), “Alfred Edward Western”. J. London Math. Soc. 38, 278–281

    Article  MATH  Google Scholar 

  • Minkowski Hermann (1905), “Peter Gustav Lejeune Dirichlet und seine Bedeutung für die heutige Mathematik”. Jahresb. DMV 14, 149–163

    Google Scholar 

  • Mirimanoff Dimitry (1893), “Sur l’équation x 37  +  y 37  +  z 37  =  0”. Jour. r. ang. Math. 111, 26–30

    Google Scholar 

  • Mirimanoff Dimitry (1904), “L’équation indeterminèe x l  +  y l  +  z l  =  0 et le critérium de Kummer”. Jour. r. ang. Math. 128, 45–68

    MATH  Google Scholar 

  • Mirimanoff Dimitry (1910), “Sur le dernier théorème de Fermat”. Comptes Rendus de l’Academie des Sciences 150, 204–206

    MATH  Google Scholar 

  • Mosteller F (1964), “Samuel S. Wilks: Statesman of Statistics”. American Statistician 18, 11–17

    Article  Google Scholar 

  • Morishima Taro (1931), “Über den Fermatschen Quotienten”. Japanese Journ. of Math. 8, 159–173

    MATH  Google Scholar 

  • Morishima Taro (1932), “Über die Fermatsche Vermutung. VII.”. Proc. Imp. Acad. Jap. 8, 63–66

    MathSciNet  Google Scholar 

  • Murty M. Ram, Yiannis N. Petridis (2001), “On Kummer’s Conjecture”. J. Number Theory 90 (2): 294–303

    Article  MathSciNet  Google Scholar 

  • Nellen H. J. M. (1994), Ismaël Boulliau (1605–1694), Astronome, Épistolier, Nouvelliste Et Intermédiaire Scientifique (Studies of the Pierre Bayle Institute), Amsterdam and Utrecht, APA-Holland University Press.

  • Nielsen Niels (1923), Traité élémentaire des nombres de Bernoulli. Paris, Gauthier-Villars

    Google Scholar 

  • Ohm Martin (1840), “Etwas über die Bernoulli’schen Zahlen”. Jour. r. ang. Math. 20, 11–12

    MATH  Google Scholar 

  • Pollaczek Felix (1917), “Über den grossen Fermat’schen Satz”. Wien. Ber. 126, 45–59

    MATH  Google Scholar 

  • Pollaczek Felix (1924), “Über die irregulären Kreiskörper der l-ten und l 2-ten Einheitswurzeln”. Math. Z. 21, 36–38

    Article  MathSciNet  Google Scholar 

  • Reitwiesner George W. (1950), “An ENIAC Determination of π and e to more than 2000 Decimal Places”. Mathematical Tables and Other Aids to Computation 4, 11–15

    Article  MathSciNet  Google Scholar 

  • Reuschler Carl G. (1875), Tafeln complexer Primzahlen aus Wurzeln der Einheit gebildet sind. Berlin.

  • Robinson Raphael (1954), “Mersenne and Fermat Numbers”. Proceedings AMS 5, 842–846

    Article  MATH  Google Scholar 

  • Rosser J. Barkley (1939), “On the first case of Fermat’s last theorem”. Bull. AMS 45, 636–640

    Article  Google Scholar 

  • Rosser J. Barkley (1940), “A new lower bound for the exponent in the first case of Fermat’s last theorem”. Bull. AMS 46, 299–304

    Article  Google Scholar 

  • Rosser J. Barkley (1941), “An additional criterion for the first case of Fermat’s last theorem”. Bull. AMS 47, 109–110

    Article  Google Scholar 

  • Rutland Davis (1995), Why Computers are Computers. The SWAC and the PC, Philomath, OR, Wren Publishers.

  • Schoenbaum E. (1908), “Ke Kummerovým pracim o Fermatově větě”. Casopis, Prag 37, 484–502

    Google Scholar 

  • Selfridge John and B.W. Pollack (1964), “Fermat’s last theorem is true for any exponent up to 25,000”, Notices AMS 11, 97.

    Google Scholar 

  • Serebrennikov S. (1907), “Neue Berechnungsmethode der Bernoullischen Zahlen”, St. Pétersb. Mém. 19 (4), 6.

  • Siegel Carl L. (1964), “Zu zwei Bemerkungken Kummers”. Gött. Nachr. 1964: 51–62

    Google Scholar 

  • Smith Henry J.S. (1965), Report on the Theory of Numbers (originally published in six parts as a Report of the British Assn., 1859–1866), Chelsea, New York.

  • Stafford Elizabeth, Harry S. Vandiver (1930), “Determination of some properly irregular cyclotomic fields”. Proc. NAS 16, 139–150

    Article  MATH  Google Scholar 

  • Staudt Karl G. C. von (1840), “Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend, Jour. r. ang. Math. 21, 372–374, 1840;

    Google Scholar 

  • Swade Doron (2003), “The ‘unerring certainty of mechanical agency’: machines and table making in the nineteenth century”, in Campbell-Kelly et al (eds.) (2003)” 145–174

  • Todd John (1990), “The prehistory and early history of computation at the NBS”, in S.G. Nash (ed.) A History of Scientific Computing. New York, Addison-Wesley, pp. 251–268

  • Tschinkel Yuri (2006), “About the cover: On the distribution of primes – Gauss’ Tables”. Bull. AMS 43, 89–91

    Article  MathSciNet  Google Scholar 

  • Vandiver Harry S. (1914), “Extensions of the criteria of Wieferich and Mirimanoff in Connection with Fermat’s Last Theorem”. Jour. r. ang. Math. 114, 314–318

    Google Scholar 

  • Vandiver Harry S. (1919), “A property of cyclotomic integers and its relation to Fermat’s last theorem”. Ann. Math. 21, 73–80

    Article  Google Scholar 

  • Vandiver Harry S. (1920), “On Kummer’s Memoir of 1857 Concerning Fermat’s Last Theorem”. Proc. Nat. Acad. Sci. 6, 266–269

    Article  Google Scholar 

  • Vandiver Harry S. (1920a), “On the class number of the field Ω (e 2iπ/pn) and the second case of Fermat’s last theorem”. Proc. Nat. Acad. Sci. 6, 416–421

    Article  Google Scholar 

  • Vandiver Harry S. (1922), “On Kummer’s memoir of 1857, concerning Fermat’s last theorem (second paper)”, Bull. AMS 28, pp. 400–407

    Google Scholar 

  • Vandiver Harry S. (1925), “On a new type of criteria for the first case of Fermat’s last theorem”. Ann. Math. 26, 88–94

    Google Scholar 

  • Vandiver Harry S. (1925a), “A property of cyclotomic integers and its relation to Fermat’s last theorem (second paper)”. Ann. Math. 26, 217-232

    Article  Google Scholar 

  • Vandiver Harry S. (1926), “Transformations of Kummer’s criteria in connection with Fermat’s last theorem”. Ann. Math. 27, 94–96

    Google Scholar 

  • Vandiver Harry S. (1929), “On Fermat’s Last Theorem”. Trans. AMS 31, 613–642

    Article  Google Scholar 

  • Vandiver Harry S. (1930), “Summary of results and proofs on Fermat’s last theorem (fifth paper)”. Proc. NAS 16, 298–305

    Article  Google Scholar 

  • Vandiver Harry S. (1930a), “Summary of results and proofs on Fermat’s last theorem (sixth paper)”. Proc. NAS 17, 661–673

    Article  Google Scholar 

  • Vandiver Harry S. (1932), “Note on the divisors of the numerators of Bernoulli’s numbers”. Proc. NAS 18, 594–597

    Article  Google Scholar 

  • Vandiver Harry S. (1934), “Fermat’s last theorem and the second factor in the cyclotomic class number”. Bull AMS 40, 118–126

    Article  Google Scholar 

  • Vandiver Harry S. (1937), “On Bernoulli Numbers and Fermat’s Last Theorem”. Duke Math. J. 3, 569–584

    Article  MathSciNet  Google Scholar 

  • Vandiver Harry S. (1937a), “On Bernoulli numbers and Fermat’s last theorem (second paper)”. Duke Mathematical Journal 3, 418–427

    Article  MathSciNet  Google Scholar 

  • Vandiver Harry S. (1946), “Fermat’s Last Theorem”, Am. Math. Mo. 53 (1946), pp. 555–578.

  • Vandiver Harry S. (1954), “Examination of methods of attack on the second case of Fermat’s last theorem”. Proc. NAS 40, 732–735

    Article  Google Scholar 

  • Vandiver Harry S., Derrick H. Lehmer, Emma Lehmer (1954), “An application of high-speed computing to Fermat’s last theorem”. Proc. NAS 40, 25–33

    Google Scholar 

  • Vandiver Harry S., John L. Selfridge, Charles A. Nicol (1955), “Proof of Fermat’s last theorem for all prime exponents less than 4002”. Proc. NAS 41, 970–973

    Google Scholar 

  • Vandiver Harry S. and George E. Wahlin (1928), Algebraic Numbers - II.Report of the Committee on Algebraic Numbers. Washington, D.C.,National Research Council.

  • Wagstaff Samuel S. (1976), “Fermat’s Last Theorem is true for any exponent less than 100,000 (abstract)”, Notices AMS 167, A-53.

  • Wagstaff Samuel S. (1978), “The irregular primes to 125000”. Math. Comp. 32 (142): 583–591

    Article  MathSciNet  MATH  Google Scholar 

  • Washington Lawrence (1997), An Introduction to Cyclotomic Fields (2nd ed). New York, Springer-Verlag

    Google Scholar 

  • Western Alfred E. (1928), “Allan Joseph Champneys Cunningham“. J. London Math. Soc. 1–3: 317–318

    Article  Google Scholar 

  • Western Alfred E., Miller J.C.P. (1968), Tables of Indices and Primitive Roots (Volume 9 of the Royal Society Mathematical Tables). Cambridge, Cambridge University Press

    Google Scholar 

  • Wieferich Arthur (1909), “ Zum letzten Fermat’schen Theorem”. Jour. r. ang. Math. 136, 293–302

    MATH  Google Scholar 

  • Williams Hugh C. (1998), Édouard Lucas and Primality Testing. New York, John Wiley and Sons

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Corry.

Additional information

Communicated by J.J. Gray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corry, L. Number crunching vs. number theory: computers and FLT, from Kummer to SWAC (1850–1960), and beyond. Arch. Hist. Exact Sci. 62, 393–455 (2008). https://doi.org/10.1007/s00407-007-0018-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-007-0018-2

Keywords

Navigation