Skip to main content
Log in

Increased PLA2 activity in individuals at ultra-high risk for psychosis

  • Short Communication
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Phospholipase A2 is the main enzyme in the metabolism of membrane phospholipids. It comprises a family of enzymes divided into iPLA2, cPLA2 and sPLA2. Studies have reported increased PLA2 activity in psychotic patients, which suggests an accelerated breakdown of membrane phospholipids. In the present study we investigated whether increased PLA2 activity is also present in individuals at ultra-high risk (UHR) for psychosis. One-hundred fifty adults were included in this study (85 UHR and 65 controls). UHR was assessed using the “structured interview for prodromal syndromes”. PLA2 activity was determined in platelets by a radio-enzymatic assay. We found in UHR individuals increased activities of iPLA2 (p < 0.001) and cPLA2 (p = 0.012) as compared to controls. No correlations were found between socio-demographic and clinical parameters and PLA2 activity. Our findings suggest that increased PLA2 activities may be useful as a biological risk-marker for psychotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Kudo I, Murakami M (2002) Phospholipase A2 enzymes. Prostaglandins Other Lipid Mediat 69:3–58. https://doi.org/10.1016/s0090-6980(02)00020-5

    Article  Google Scholar 

  2. Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111:6130–6185. https://doi.org/10.1021/cr200085w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schaloske RH, Dennis EA (2006) The phospholipase A2 superfamily and its group numbering system. Biochim Biophys Acta 1761:1246–1259. https://doi.org/10.1016/j.bbalip.2006.07.011

    Article  CAS  PubMed  Google Scholar 

  4. Murakami M, Nakatani Y, Atsumi GI, Inoue K, Kudo I (2017) Regulatory functions of phospholipase A2. Crit Rev Immunol 37:121–179. https://doi.org/10.1615/CritRevImmunol.v37.i2-6.20

    Article  Google Scholar 

  5. Allyson J, Bi X, Baudry M, Massicotte G (2012) Maintenance of synaptic stability requires calcium-independent phospholipase A2 activity. Neural Plast 2012:2090–5904. https://doi.org/10.1155/2012/569149

  6. Fitzpatrick JS, Baudry M (1994) Blockade of long-term depression in neonatal hippocampal slices by a phospholipase A2 inhibitor. Dev Brain Res 78:81–86. https://doi.org/10.1016/0165-3806(94)90012-4

    Article  CAS  Google Scholar 

  7. Gattaz WF, Köllisch M, Thuren T, Virtanen JA, Kinnunen PK (1987) Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biol Psychiatry 22:421–426. https://doi.org/10.1016/0006-3223(87)90164-8

    Article  CAS  PubMed  Google Scholar 

  8. Gattaz WF, Hübner CVK, Nevalainen TJ, Thuren T, Kinnunen PK (1990) Increased serum phospholipase A2 activity in schizophrenia: a replication study. Biol Psychiatry 28:495–501

    CAS  PubMed  Google Scholar 

  9. Pettegrew JW, Keshavan MS, Panchalingam K et al (1991) Alterations in brain high energy phosphate and membrane phospholipid metabolism in first episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch Gen Psychiatry 48:563–568. https://doi.org/10.1001/archpsyc.1991.01810300075011

    Article  CAS  PubMed  Google Scholar 

  10. Fenton WS, Hibbeln J, Knable M (2000) Essential fatty acids, lipid membrane abnormalities and the diagnosis and treatment of schizophrenia. Biol Psychiatry 47:8–21. https://doi.org/10.1016/s0006-3223(99)00092-x

    Article  CAS  PubMed  Google Scholar 

  11. Emsley R, Oosthuizen P, van Rensburg SJ (2003) Clinical potential of omega-3 fatty acids in the treatment of schizophrenia. CNS Drugs 17:1081–1091. https://doi.org/10.2165/00023210-200317150-00003

    Article  CAS  PubMed  Google Scholar 

  12. Berger GE, Smesny S, Amminger GP (2006) Bioactive lipids in schizophrenia. Int Rev Psychiatry 18:85–98. https://doi.org/10.1080/09540260600583072

    Article  PubMed  Google Scholar 

  13. Law MH, Cotton RG, Berger GE (2006) The role of phospholipases A2 in schizophrenia. Mol Psychiatry 11:547–556. https://doi.org/10.1038/sj.mp.4001819

    Article  CAS  PubMed  Google Scholar 

  14. Smesny S, Milleit B, Hipler UC et al (2014) Omega-3 fatty acid supplementation changes intracellular phospholipase A2 activity and membrane fatty acid profiles in individuals at ultra-high risk for psychosis. Mol Psych 19:317–324. https://doi.org/10.1038/mp.2013.7

    Article  CAS  Google Scholar 

  15. Reimers A, Ljung H (2019) The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Ther Adv Psychopharmacol 24(9):2045125319858901. https://doi.org/10.1177/2045125319858901

    Article  CAS  Google Scholar 

  16. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379. https://doi.org/10.1016/s0753-3322(02)00253-6

    Article  CAS  PubMed  Google Scholar 

  17. Agostoni C, Nobile M, Ciappolino V, Delvecchio G, Tesei A, Turolo S, Crippa A, Mazzocchi A, Altamura CA, Brambilla P (2017) The role of omega-3 fatty acids in developmental psychopathology: a systematic review on early psychosis, autism, and ADHD. Int J Mol Sci 18:2608

    Article  Google Scholar 

  18. Yung AR, McGorry PD (1996) The prodromal phase of first-episode psychosis: past and current conceptualizations. Schizophr Bull 22:353–370. https://doi.org/10.1093/schbul/22.2.353

    Article  CAS  PubMed  Google Scholar 

  19. McGorry PD, Hartmann JA, Spooner R, Nelson B (2018) Beyond the “at risk mental state” concept: transitioning to transdiagnostic psychiatry. World Psychiatry 17:133–142. https://doi.org/10.1002/wps.20514

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yung AR, Nelson B, Stanford C et al (2008) Validation of “prodromal” criteria to detect individuals at ultra high risk of psychosis: 2 year follow-up. Schizophr Res 105:10–17. https://doi.org/10.1016/j.schres.2008.07.012

    Article  PubMed  Google Scholar 

  21. Loch AA, Chianca C, Alves TM et al (2017) Poverty, low education, and the expression of psychotic-like experiences in the general population of São Paulo, Brazil. Psychiatry Res 253:182–188. https://doi.org/10.1016/j.psychres.2017.03.052

    Article  PubMed  Google Scholar 

  22. Loewy RL, Bearden CE, Johnson JK, Raine A, Cannon TD (2005) The prodromal questionnaire (PQ): preliminary validation of a self-report screening measure for prodromal and psychotic syndromes. Schizophr Res 77:141–149. https://doi.org/10.1016/j.schres.2005.03.007

    Article  PubMed  Google Scholar 

  23. Gonçalves PD, Martins PA, Gordon P, Louzã M (2017) Prodromal Questionnaire: translation, adaptation to Portuguese and preliminary results in ultra-high risk individuals and first episode psychosis. J Bras Psiquiatr 61:96–101

    Article  Google Scholar 

  24. Rietdijk J, Fokkema M, Stahl D et al (2014) The distribution of self-reported psychotic-like experiences in non-psychotic help-seeking mental health patients in the general population; a factor mixture analysis. Soc Psychiatr Epidemiol 49:349–358. https://doi.org/10.1007/s00127-013-0772-1

    Article  Google Scholar 

  25. McGlashan TH, Miller TJ, Woods SW, Hoffman RE, Davidson L (2001) Instrument for the Assessment of Prodromal Symptoms and States BT—Early Intervention in Psychotic Disorders. In: Miller T, Mednick SA, McGlashan TH, Libiger J, Johannessen JO (eds). Springer Netherlands: Dordrecht, pp 135–149

  26. American Psychiatric Association—APA (1994) Diagnostic and Statistical Manual of Mental Disorders—DSM-IV, 4th edn. American Psychiatry Association, Washington, DC

    Google Scholar 

  27. Andreasen NC, Endicott J, Spitzer RL, Winokur G (1977) The family history method using diagnostic criteria: reliability and validity. JAMA Psychiatry 34:1229–1235. https://doi.org/10.1001/archpsyc.1977.01770220111013

    Article  CAS  Google Scholar 

  28. Hall RCW (1995) Global assessment of functioning: a modified scale. Psychosomatics 36:267–275. https://doi.org/10.1016/S0033-3182(95)71666-8

    Article  CAS  PubMed  Google Scholar 

  29. Loch AA, Freitas EL, Hortência L et al (2019) Hearing spirits? Religiosity in individuals at risk for psychosis–Results from the Brazilian SSAPP cohort. Schizophr Res 204:353–359. https://doi.org/10.1016/j.schres.2018.09.020

    Article  PubMed  Google Scholar 

  30. Talib LL, Diniz BS, Zainaghi IA, Forlenza OV, Gattaz WF (2012) A radioenzymatic assay to identify three groups of phospholipase A(2) in platelets. PLEFA 86:149–153. https://doi.org/10.1016/j.plefa.2012.02.005

    Article  CAS  Google Scholar 

  31. Gattaz WF, Steudle A, Maras A (1995) Increased platelet phospholipase A2 in schizophrenia. Schizophr Res 16:1–6. https://doi.org/10.1016/0920-9964(94)00060-l

    Article  CAS  PubMed  Google Scholar 

  32. Ross BM, Turenne S, Moszczynska A, Warsh JJ, Kish SJ (1999) Differential alteration of phospholipase A2 activities in brain of patients with schizophrenia. Brain Res 821:407–413. https://doi.org/10.1016/s0006-8993(99)01123-3

    Article  CAS  PubMed  Google Scholar 

  33. Bennett CN, Horrobin DF (2000) Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorders: an update. PLEFA 63:47–59. https://doi.org/10.1054/plef.2000.0191

    Article  CAS  Google Scholar 

  34. Smesny S, Kinder D, Wilhardt I et al (2005) Increased calcium-independent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biol Psychiatry 57:399–405. https://doi.org/10.1016/j.biopsych.2004.11.018

    Article  CAS  PubMed  Google Scholar 

  35. Smesny S, Rosburg T, Nenadic I et al (2007) Metabolic mapping using 2D 31P-MR spectroscopy reveals frontal and thalamic metabolic abnormalities in schizophrenia. Neuroimage 35:729–737. https://doi.org/10.1016/j.neuroimage.2006.12.023

    Article  PubMed  Google Scholar 

  36. Smesny S, Kunnstmann C, Kunstmann S et al (2011) Phospholipase A2 activity in first episode schizophrenia: associations with symptom severity and outcome at week 12. World J Biol Psychiatry 12:598–607. https://doi.org/10.3109/15622975.2010.541283

    Article  PubMed  Google Scholar 

  37. Schaeffer EL, Gattaz WF, Eckert GP (2012) Alterations of brain membranes in schizophrenia: impact of phospholipase A(2). Curr Top Med Chem 12:2314–2323. https://doi.org/10.2174/156802612805289845

    Article  CAS  PubMed  Google Scholar 

  38. Yao JK, Leonard S, Reddy RD (2000) Membrane phospholipid abnormalities in postmortem brains from schizophrenic patients. Schizophr Res 42:7–17. https://doi.org/10.1016/s0920-9964(99)00095-x

    Article  CAS  PubMed  Google Scholar 

  39. Schmitt A, Wilczek K, Blennow K et al (2004) Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. Biol Psychiatry 56:41–45. https://doi.org/10.1016/j.biopsych.2004.03.019

    Article  CAS  PubMed  Google Scholar 

  40. Pearce JM, Komoroski RA, Mrak RE (2009) Phospholipid composition of postmortem schizophrenic brain by 31P NMR spectroscopy. Magn Reson Med 61:28–34. https://doi.org/10.1002/mrm.21820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pangerl AM, Steudle A, Jaroni HW, Rufer R, Gattaz WF (1991) Increased platelet membrane lysophosphatidylcholine in schizophrenia. Biol Psychiatry 30:837–840. https://doi.org/10.1016/0006-3223(91)90239-i

    Article  CAS  PubMed  Google Scholar 

  42. Komoroski RA, Pearce JM, Mrak RE (2008) 31P NMR spectroscopy of phospholipid metabolites in postmortem schizophrenic brain. Magn Reson Med 59:469–474. https://doi.org/10.1002/mrm.21516

    Article  CAS  PubMed  Google Scholar 

  43. Eckert GP, Schaeffer EL, Schmitt A, Maras A, Gattaz WF (2011) Increased brain membrane fluidity in schizophrenia. Pharmacopsychiatry 44:161–162. https://doi.org/10.1055/s-0031-1279731

    Article  CAS  PubMed  Google Scholar 

  44. Deicken RF, Calabrese G, Merrin EL et al (1994) 31 phosphorus magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia. Biol Psychiatry 36:503–510. https://doi.org/10.1016/0006-3223(94)90613-0

    Article  CAS  PubMed  Google Scholar 

  45. Stanley JA, Williamson PC, Drost DJ et al (1995) An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy. Arch Gen Psychiatry 52:399–406. https://doi.org/10.1001/archpsyc.1995.03950170073010

    Article  CAS  PubMed  Google Scholar 

  46. Blüml S, Tan J, Harris K et al (1999) Quantitative proton-decoupled 31P MRS of the schizophrenic brain in vivo. J Comput Assist Tomogr 23:272–275. https://doi.org/10.1097/00004728-199903000-00017

    Article  PubMed  Google Scholar 

  47. Auer DP, Wilke M, Grabner A, Heidenreich JO, Bronisch T, Wetter TC (2001) Reduced NAA in the thalamus and altered membrane and glial metabolism in schizophrenic patients detected by 1H-MRS and tissue segmentation. Schizophr Res 52:87–99. https://doi.org/10.1016/s0920-9964(01)00155-4

    Article  CAS  PubMed  Google Scholar 

  48. Jensen JE, Miller J, Williamson PC et al (2004) Focal changes in brain energy and phospholipid metabolism in first-episode schizophrenia: 31P-MRS chemical shift imaging study at 4 Tesla. Br J Psychiatry 184:409–415. https://doi.org/10.1192/bjp.184.5.409

    Article  PubMed  Google Scholar 

  49. Lutkenhoff ES, van Erp TG, Thomas MA et al (2010) Proton MRS in twin pairs discordant for schizophrenia. Mol Psychiatry 15:308–318. https://doi.org/10.1038/mp.2008.87

    Article  CAS  PubMed  Google Scholar 

  50. Miller J, Drost DJ, Jensen E et al (2012) Progressive membrane phospholipid changes in first episode schizophrenia with high field magnetic resonance spectroscopy. Psychiatry Res 201:25–33. https://doi.org/10.1016/j.pscychresns.2011.06.017

    Article  CAS  PubMed  Google Scholar 

  51. Ross BM, Hughes B, Kish SJ, Warsh JJ (2006) Serum calcium-independent phospholipase A2 activity in bipolar affective disorder. Bipolar Disord 8:265–270. https://doi.org/10.1111/j.1399-5618.2006.00299.x

    Article  CAS  PubMed  Google Scholar 

  52. Gattaz WF, Valente KD, Raposo NR, Vincentiis S, Talib LL (2011) Increased PLA2 activity in the hippocampus of patients with temporal lobe epilepsy and psychosis. J Psychiatr Res 45:1617–1620. https://doi.org/10.1016/j.jpsychires.2011.07.005

    Article  PubMed  Google Scholar 

  53. Tavares H, Yacubian J, Talib LL, Barbosa NR, Gattaz WF (2003) Increased phospholipase A2 activity in schizophrenia with absent response to niacin. Schizoph Res 61:1–6. https://doi.org/10.1016/s0920-9964(02)00281-5

    Article  Google Scholar 

  54. Smesny S, Milleit B, Nenadic I et al (2010) Phospholipase A2 activity is associated with structural brain changes in schizophrenia. Neuroimage 52:1314–1327. https://doi.org/10.1016/j.neuroimage.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  55. Reimers A, Ljung H (2019) The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Ther Adv Psychopharmacol 9:2045125319858901. https://doi.org/10.1177/2045125319858901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56:365–379. https://doi.org/10.1016/s0753-3322(02)00253-6

    Article  CAS  PubMed  Google Scholar 

  57. du Bois TM, Deng C, Huang XF (2005) Membrane phospholipid composition, alterations in neurotransmitter systems and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 29:878–888. https://doi.org/10.1016/j.pnpbp.2005.04.034

    Article  CAS  PubMed  Google Scholar 

  58. Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP (2003) Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62:195–204. https://doi.org/10.1016/s0920-9964(02)00284-0

    Article  PubMed  Google Scholar 

  59. Peet M, Brind J, Ramchand CN, Shah S, Vankar GK (2001) Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 49:243–251. https://doi.org/10.1016/s0920-9964(00)00083-9

    Article  CAS  PubMed  Google Scholar 

  60. Emsley R, Myburgh C, Oosthuizen P, van Rensburg SJ (2002) Randomized, placebo-controlled study of ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry 159:1596–1598. https://doi.org/10.1176/appi.ajp.159.9.1596

    Article  PubMed  Google Scholar 

  61. Sivrioglu EY, Kirli S, Sipahioglu D, Gursoy B, Sarandol E (2007) The impact of omega-3 fatty acids, vitamins E and C supplementation on treatment outcome and side effects in schizophrenia patients treated with haloperidol: an open-label pilot study. Prog Neuropsychopharmacol Biol Psychiatry 31:1493–1499. https://doi.org/10.1016/j.pnpbp.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  62. Jamilian H, Solhi H, Jamilian M (2014) Randomized, placebo-controlled clinical trial of omega-3 as supplemental treatment in schizophrenia. Glob J Health Sci 6:103–108. https://doi.org/10.5539/gjhs.v6n7p103

    Article  PubMed  PubMed Central  Google Scholar 

  63. Amminger GP, Schäfer MR, Schlögelhofer M, Klier CM, McGorry PD (2015) Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nature Commun 6:7934. https://doi.org/10.1038/ncomms8934

    Article  CAS  Google Scholar 

  64. Amminger GP, Schafer MR, Papageorgiou K et al (2010) Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 67:146–154. https://doi.org/10.1001/archgenpsychiatry.2009.192

    Article  CAS  PubMed  Google Scholar 

  65. Amminger GP, Schaefer MR, Papageorgiou K et al (2007) Omega 3 fatty acids reduce the risk of early transition to psychosis in ultra-high risk individuals: a double-blind randomized, placebo-controlled treatment study. Schizophr Bull 33:418–419

    Google Scholar 

  66. Pawelczyk T, Grancow-Grabka M, Kotlicka-Antczak M, Trafalska E, Pawelczyk A (2016) A randomized controlled study of the efficacy of six-month supplementation with concentrated fish oil rich in omega-3 polyunsaturated fatty acids in first episode schizophrenia. J Psychiatr Res 73:34–44. https://doi.org/10.1016/j.jpsychires.2015.11.013

    Article  PubMed  Google Scholar 

  67. Pawelczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Pawelczyk A (2017) Oxidative stress reduction related to the efficacy of n-3 polyunsaturated fatty acids in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized trial. PLEFA 121:7–13. https://doi.org/10.1016/j.plefa.2017.05.004

    Article  CAS  Google Scholar 

  68. Berger GE, Proffitt T, McConchie M et al (2007) Ethyl-eicosapentaenoic acid in first-episode psychosis: a randomized, placebo-controlled trial. J Clin Psychiatry 68:1867–1875. https://doi.org/10.4088/jcp.v68n1206

    Article  CAS  PubMed  Google Scholar 

  69. Wood SJ, Cocchi L, Proffitt TM et al (2010) Neuroprotective effects of ethyl-eicosapentaenoic acid in first episode psychosis: a longitudinal T2 relaxometry pilot study. Psych Res Neuroimag 182:180–182. https://doi.org/10.1016/j.pscychresns.2009.12.003

    Article  CAS  Google Scholar 

  70. Robinson DG, Gallego JA, John M et al (2019) A potential role for adjunctive omega-3 polyunsaturated fatty acids for depression and anxiety symptoms in recent onset psychosis: results from a 16 week randomized placebo-controlled trial for participants concurrently treated with risperidone. Schizophr Res 204:295–303. https://doi.org/10.1016/j.schres.2018.09.006

    Article  PubMed  Google Scholar 

  71. Smesny S, Kinder D, Willhardt I, Rosburg T, Lasch J, Berger G, Sauer H (2005) Increased calcium-independent phospholipase A2 activity in first but not in multi episode chronic schizophrenia. Biol Psychiatry 57:399–405. https://doi.org/10.1016/j.biopsych.2004.11.018

    Article  CAS  PubMed  Google Scholar 

  72. Alqarni A, Mitchell TW, McGorry PD et al (2019) Comparision of erythrocyte omega-3 index, fatty acids and molecular phospholipid species in people at ultra-high risk of developing psychosis and healthy people. Schizophr Res S0320–9964(19):30241–30245. https://doi.org/10.1016/j.schres.2019.06.020

    Article  Google Scholar 

  73. Amminger GP, Nelson B, Markulev C et al (2020) The NEURAPRO biomarker analysis: Long-chain omega-3 fatty acids improve 6-month and 12-month outcomes in youths at ultra-high risk for psychosis. Biol Psychiatry 87:243–252. https://doi.org/10.1016/j.biopsych.2019.08.030

    Article  CAS  PubMed  Google Scholar 

  74. Emsley R, Niehaus DJH, Koen L et al (2006) The effects of eicosapentaenoic acid in tardive dyskinesia: a randomized, placebo-controlled trial. Schizophr Res 84:112–120. https://doi.org/10.1016/j.schres.2006.03.023

    Article  PubMed  Google Scholar 

  75. Manteghiy A, Shakeri MT, Koohestani L, Salari E (2008) Beneficial antipsychotic effects of omega-3 fatty acids add-on therapy for the pharmacological management of patients with schizophrenia. Iranian J Psych Behav Sci 2:35–40

    CAS  Google Scholar 

  76. Bentsen H, Osnes K, Refsum H, Solberg DK, Bohmer T (2013) A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E+C in schizophrenia. Transl Psychiatry 3:335. https://doi.org/10.1038/tp.2013.110

    Article  CAS  Google Scholar 

  77. Kerr DS, Talib LL, Yamamoto VJ et al (2013) Antipsychotic drugs decrease iPLA2 gene expression in schizophrenia. Schizophr Res 147:203–204. https://doi.org/10.1016/j.schres.2013.03.026

    Article  PubMed  Google Scholar 

  78. Frieboes RM, Moises HW, Gattaz WF et al (2001) Lack of association between schizophrenia and the phospholipase-A(2) genes cPLA2 and sPLA2. Am J Med Genet 105:246–249. https://doi.org/10.1002/ajmg.1262

    Article  CAS  PubMed  Google Scholar 

  79. Barbosa NR, Junqueira RM, Vallada HP, Gattaz WF (2007) Association between BanI genotype and increased phospholipase A2 activity in schizophrenia. Eur Arch Psychiatry Clin Neurosci 257:340–343. https://doi.org/10.1007/s00406-007-0736-0

    Article  PubMed  Google Scholar 

  80. Joaquim HPG, Costa AC, Serpa MH, Talib LL, Gattaz WF (2020) Reduced Annexin A3 in schizophrenia. Eur Arch Psychiatry Clin Neurosci 270:489–494. https://doi.org/10.1007/s00406-019-01048-3

    Article  PubMed  Google Scholar 

  81. Xu C, Yang X, Sun L et al (2019) An investigation of calcium-independent phospholipase A2 (iPLA2) and cytosolic phospholipase A2 (cPLA2) in schizophrenia. Psych Res 273:782–787. https://doi.org/10.1016/j.psychres.2019.01.095

    Article  CAS  Google Scholar 

  82. Allyson J, Bi X, Baudry M, Massicotte G (2012) Maintenance of synaptic stability requires calcium-independent phospholipase A2 activity. Neural Plast. https://doi.org/10.1155/2012/569149

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo—FAPESP (Grants No. 2017/26291-2; 2018/11414-4), Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN—Grant No. 2014/50873-3), Conselho Nacional de Desenvolvimento Científico—CNPq and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES. The Laboratory of Neuroscience receives financial support from Associação Beneficente Alzira Denise Hertzog da Silva (ABADHS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner F. Gattaz.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talib, L.L., Costa, A.C., Joaquim, H.P.G. et al. Increased PLA2 activity in individuals at ultra-high risk for psychosis. Eur Arch Psychiatry Clin Neurosci 271, 1593–1599 (2021). https://doi.org/10.1007/s00406-021-01246-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-021-01246-y

Keywords

Navigation