Skip to main content
Log in

Alterations in resting-state gamma activity in patients with schizophrenia: a high-density EEG study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Alterations of EEG gamma activity in schizophrenia have been reported during sensory and cognitive tasks, but it remains unclear whether changes are present in resting state. Our aim was to examine whether changes occur in resting state, and to delineate those brain regions where gamma activity is altered. Furthermore, we wanted to identify the associations between changes in gamma activity and psychopathological characteristics. We studied gamma activity (30–48 Hz) in 60 patients with schizophrenia and 76 healthy controls. EEGs were acquired in resting state with closed eyes using a high-density, 256-channel EEG-system. The two groups were compared in absolute power measures in the gamma frequency range. Compared to controls, in patients with schizophrenia the absolute power was significantly elevated (false discovery rate corrected p < 0.05). The alterations clustered into fronto-central and posterior brain regions, and were positively associated with the severity of psychopathology, measured by the PANSS. Changes in gamma activity can lead to disturbed coordination of large-scale brain networks. Thus, the increased gamma activity in certain brain regions that we found may result in disturbances in temporal coordination of task-free/resting-state networks in schizophrenia. Positive association of increased gamma power with psychopathology suggests that altered gamma activity provides a contribution to symptom presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Herculano-Houzel S, Munk MH, Neuenschwander S, Singer W (1999) Precisely synchronized oscillatory firing patterns require electroencephalographic activation. J Neurosci 19:3992–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Uhlhaas PJ (2013) Dysconnectivity, large-scale networks and neuronal dynamics in schizophrenia. Curr Opin Neurobiol 23:283–290

    Article  CAS  PubMed  Google Scholar 

  3. White RS, Siegel SJ (2016) Cellular and circuit models of increased resting-state network gamma activity in schizophrenia. Neuroscience 321:66–76

    Article  CAS  PubMed  Google Scholar 

  4. Buzsaki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25:409–432

    Article  CAS  PubMed  Google Scholar 

  6. Friston KJ (1999) Schizophrenia and the disconnection hypothesis. Acta Psychiatr Scand Suppl 395:68–79

    Article  CAS  PubMed  Google Scholar 

  7. Friston K, Brown HR, Siemerkus J, Stephan KE (2016) The dysconnection hypothesis (2016). Schizophr Res 176:83–94

    Article  PubMed  PubMed Central  Google Scholar 

  8. Reichenberg A (2010) The assessment of neuropsychological functioning in schizophrenia. Dialogues Clin Neurosci 12:383–392

    PubMed  Google Scholar 

  9. Basar-Eroglu C, Schmiedt-Fehr C, Mathes B, Zimmermann J, Brand A (2009) Are oscillatory brain responses generally reduced in schizophrenia during long sustained attentional processing? Int J Psychophysiol 71:75–83

    Article  PubMed  Google Scholar 

  10. Hall MH, Taylor G, Sham P, Schulze K, Rijsdijk F, Picchioni M, Toulopoulou T, Ettinger U, Bramon E, Murray RM, Salisbury DF (2011) The early auditory gamma-band response is heritable and a putative endophenotype of schizophrenia. Schizophr Bull 37:778–787

    Article  PubMed  Google Scholar 

  11. Hall MH, Taylor G, Salisbury DF, Levy DL (2011) Sensory gating event-related potentials and oscillations in schizophrenia patients and their unaffected relatives. Schizophr Bull 37:1187–1199

    Article  PubMed  Google Scholar 

  12. Hirano S, Hirano Y, Maekawa T, Obayashi C, Oribe N, Kuroki T, Kanba S, Onitsuka T (2008) Abnormal neural oscillatory activity to speech sounds in schizophrenia: a magnetoencephalography study. J Neurosci 28:4897–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Krishnan GP, Hetrick WP, Brenner CA, Shekhar A, Steffen AN, O’Donnell BF (2009) Steady state and induced auditory gamma deficits in schizophrenia. NeuroImage 47:1711–1719

    Article  CAS  PubMed  Google Scholar 

  14. Lee KH, Williams LM, Haig A, Goldberg E, Gordon E (2001) An integration of 40 hz gamma and phasic arousal: novelty and routinization processing in schizophrenia. Clin Neurophysiol 112:1499–1507

    Article  CAS  PubMed  Google Scholar 

  15. Leicht G, Kirsch V, Giegling I, Karch S, Hantschk I, Moller HJ, Pogarell O, Hegerl U, Rujescu D, Mulert C (2010) Reduced early auditory evoked gamma-band response in patients with schizophrenia. Biol Psychiatry 67:224–231

    Article  PubMed  Google Scholar 

  16. Leicht G, Karch S, Karamatskos E, Giegling I, Moller HJ, Hegerl U, Pogarell O, Rujescu D, Mulert C (2011) Alterations of the early auditory evoked gamma-band response in first-degree relatives of patients with schizophrenia: Hints to a new intermediate phenotype. J Psychiatric Res 45:699–705

    Article  Google Scholar 

  17. Lenz D, Fischer S, Schadow J, Bogerts B, Herrmann CS (2011) Altered evoked gamma-band responses as a neurophysiological marker of schizophrenia? Int J Psychophysiol 79:25–31

    Article  PubMed  Google Scholar 

  18. Roach BJ, Mathalon DH (2008) Event-related eeg time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 34:907–926

    Article  PubMed  PubMed Central  Google Scholar 

  19. Teale P, Collins D, Maharajh K, Rojas DC, Kronberg E, Reite M (2008) Cortical source estimates of gamma band amplitude and phase are different in schizophrenia. NeuroImage 42:1481–1489

    Article  PubMed  Google Scholar 

  20. Gallinat J, Winterer G, Herrmann CS, Senkowski D (2004) Reduced oscillatory gamma-band responses in unmedicated schizophrenic patients indicate impaired frontal network processing. Clin Neurophysiol 115:1863–1874

    Article  PubMed  Google Scholar 

  21. Haig AR, Gordon E, De Pascalis V, Meares RA, Bahramali H, Harris A (2000) Gamma activity in schizophrenia: evidence of impaired network binding? Clin Neurophysiol 111:1461–1468

    Article  CAS  PubMed  Google Scholar 

  22. Brenner CA, Krishnan GP, Vohs JL, Ahn WY, Hetrick WP, Morzorati SL, O’Donnell BF (2009) Steady state responses: electrophysiological assessment of sensory function in schizophrenia. Schizophr Bull 35:1065–1077

    Article  PubMed  PubMed Central  Google Scholar 

  23. Spencer KM (2008) Visual gamma oscillations in schizophrenia: implications for understanding neural circuitry abnormalities. Clin EEG Neurosci 39:65–68

    Article  PubMed  Google Scholar 

  24. Cho RY, Konecky RO, Carter CS (2006) Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci USA 103:19878–19883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kissler J, Muller MM, Fehr T, Rockstroh B, Elbert T (2000) Meg gamma band activity in schizophrenia patients and healthy subjects in a mental arithmetic task and at rest. Clin Neurophysiol 111:2079–2087

    Article  CAS  PubMed  Google Scholar 

  26. Minzenberg MJ, Firl AJ, Yoon JH, Gomes GC, Reinking C, Carter CS (2010) Gamma oscillatory power is impaired during cognitive control independent of medication status in first-episode schizophrenia. Neuropsychopharmacology 35:2590–2599

    Article  PubMed  PubMed Central  Google Scholar 

  27. Barr MS, Farzan F, Tran LC, Chen R, Fitzgerald PB, Daskalakis ZJ (2010) Evidence for excessive frontal evoked gamma oscillatory activity in schizophrenia during working memory. Schizophr Res 121:146–152

    Article  CAS  PubMed  Google Scholar 

  28. Basar-Eroglu C, Brand A, Hildebrandt H, Karolina Kedzior K, Mathes B, Schmiedt C (2007) Working memory related gamma oscillations in schizophrenia patients. Int J Psychophysiol 64:39–45

    Article  PubMed  Google Scholar 

  29. Gonzalez-Hernandez JA, Cedeno I, Pita-Alcorta C, Galan L, Aubert E, Figueredo-Rodriguez P (2003) Induced oscillations and the distributed cortical sources during the wisconsin card sorting test performance in schizophrenic patients: New clues to neural connectivity. Int J Psychophysiol 48:11–24

    Article  CAS  PubMed  Google Scholar 

  30. Haenschel C, Bittner RA, Waltz J, Haertling F, Wibral M, Singer W, Linden DE, Rodriguez E (2009) Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. J Neurosci 29:9481–9489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gandal MJ, Edgar JC, Klook K, Siegel SJ (2012) Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62:1504–1518

    Article  CAS  PubMed  Google Scholar 

  32. Kam JW, Bolbecker AR, O’Donnell BF, Hetrick WP, Brenner CA (2013) Resting state eeg power and coherence abnormalities in bipolar disorder and schizophrenia. J Psychiatric Res 47:1893–1901

    Article  Google Scholar 

  33. Kikuchi M, Hashimoto T, Nagasawa T, Hirosawa T, Minabe Y, Yoshimura M, Strik W, Dierks T, Koenig T (2011) Frontal areas contribute to reduced global coordination of resting-state gamma activities in drug-naive patients with schizophrenia. Schizophr Res 130:187–194

    Article  PubMed  Google Scholar 

  34. Hong LE, Summerfelt A, Mitchell BD, O’Donnell P, Thaker GK (2012) A shared low-frequency oscillatory rhythm abnormality in resting and sensory gating in schizophrenia. Clin Neurophysiol 123:285–292

    Article  PubMed  Google Scholar 

  35. Mitra S, Nizamie SH, Goyal N, Tikka SK (2015) Evaluation of resting state gamma power as a response marker in schizophrenia. Psychiatry Clin Neurosci 69:630–639

    Article  PubMed  Google Scholar 

  36. Tikka SK, Nizamie SH, Goyal N, Pradhan N, Tikka DL, Katshu MZ (2015) Evaluation of spontaneous dense array gamma oscillatory activity and minor physical anomalies as a composite neurodevelopmental endophenotype in schizophrenia. Int J dev Neurosci 40:43–51

    Article  PubMed  Google Scholar 

  37. Tikka SK, Yadav S, Nizamie SH, Das B, Tikka DL, Goyal N (2014) Schneiderian first rank symptoms and gamma oscillatory activity in neuroleptic naive first episode schizophrenia: a 192 channel eeg study. Psychiatry Investig 11:467–475

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tikka SK, Nizamie SH, Das B, Katshu MZ, Goyal N (2013) Increased spontaneous gamma power and synchrony in schizophrenia patients having higher minor physical anomalies. Psychiatry Res 207:164–172

    Article  PubMed  Google Scholar 

  39. Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S (2016) Task-free mri predicts individual differences in brain activity during task performance. Science 352:216–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fenton GW, Fenwick PB, Dollimore J, Dunn TL, Hirsch SR (1980) Eeg spectral analysis in schizophrenia. Br J Psychiatry 136:445–455

    Article  CAS  PubMed  Google Scholar 

  41. Giannitrapani D, Kayton L (1974) Schizophrenia and eeg spectral analysis. Electroencephalogr Clin Neurophysiol 36:377–386

    Article  CAS  PubMed  Google Scholar 

  42. Giannitrapani D (1979) Spatial organization of the eeg in normal and schizophrenic subjects. Electromyogr Clin Neurophysiol 19:125–145

    CAS  PubMed  Google Scholar 

  43. Itil TM, Saletu B, Davis S (1972) Eeg findings in chronic schizophrenics based on digital computer period analysis and analog power spectra. Biol Psychiatry 5:1–13

    CAS  PubMed  Google Scholar 

  44. Itil TM, Saletu B, Davis S, Allen M (1974) Stability studies in schizophrenics and normals using computer-analyzed eeg. Biol Psychiatry 8:321–335

    CAS  PubMed  Google Scholar 

  45. Rodin E, Grisell J, Gottlieb J (1968) Some electrographic differences between chronic schizophrenic patients and normal subjects. Recent Adv Biol Psychiatry 10:194–204

    Article  CAS  PubMed  Google Scholar 

  46. Bandyopadhyaya D, Nizamie SH, Pradhan N, Bandyopadhyaya A (2011) Spontaneous gamma coherence as a possible trait marker of schizophrenia-an explorative study. Asian J Psychiatr 4:172–177

    Article  PubMed  Google Scholar 

  47. Tikka SK, Yadav S, Nizamie SH, Das B, Goyal N, Tikka DL (2014) Sporadic and familial subgroups of schizophrenia do not differ on dense array spontaneous gamma oscillatory activity. Psychiatry Res 220:1151–1154

    Article  PubMed  Google Scholar 

  48. Rutter L, Carver FW, Holroyd T, Nadar SR, Mitchell-Francis J, Apud J, Weinberger DR, Coppola R (2009) Magnetoencephalographic gamma power reduction in patients with schizophrenia during resting condition. Human brain Mapp 30:3254–3264

    Article  Google Scholar 

  49. Kim JS, Shin KS, Jung WH, Kim SN, Kwon JS, Chung CK (2014) Power spectral aspects of the default mode network in schizophrenia: an meg study. BMC Neurosci 15:104

    Article  PubMed  PubMed Central  Google Scholar 

  50. Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) Eeglab, sift, nft, bcilab, and erica: new tools for advanced eeg processing. Comput Intell Neurosci 2011:130714

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lopez-Calderon J, Luck SJ (2014) Erplab: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci 8:213

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mognon A, Jovicich J, Bruzzone L, Buiatti M (2011) Adjust: an automatic eeg artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48:229–240

    Article  PubMed  Google Scholar 

  53. Delorme A, Palmer J, Onton J, Oostenveld R, Makeig S (2012) Independent eeg sources are dipolar. PloS One 7:e30135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lund TR, Sponheim SR, Iacono WG, Clementz BA (1995) Internal consistency reliability of resting eeg power spectra in schizophrenic and normal subjects. Psychophysiology 32:66–71

    Article  CAS  PubMed  Google Scholar 

  55. Thatcher RW, Palmero-Soler E, North DM, Biver CJ (2016) Intelligence and eeg measures of information flow: efficiency and homeostatic neuroplasticity. Sci Rep 6:38890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marder SR, Davis JM, Chouinard G (1997) The effects of risperidone on the five dimensions of schizophrenia derived by factor analysis: combined results of the north american trials. J Clin Psychiatry 58:538–546

    Article  CAS  PubMed  Google Scholar 

  57. Woods SW (2003) Chlorpromazine equivalent doses for the newer atypical antipsychotics. J Clin Psychiatry 64:663–667

    Article  CAS  PubMed  Google Scholar 

  58. Leucht S, Samara M, Heres S, Patel MX, Woods SW, Davis JM (2014) Dose equivalents for second-generation antipsychotics: the minimum effective dose method. Schizophr Bull 40:314–326

    Article  PubMed  PubMed Central  Google Scholar 

  59. Derogatis LR, Rickels K, Rock AF (1976) The scl-90 and the mmpi: a step in the validation of a new self-report scale. Br J Psychiatry 128:280–289

    Article  CAS  PubMed  Google Scholar 

  60. Hochberg Y, Benjamini Y (1990) More powerful procedures for multiple significance testing. Stat Med 9:811–818

    Article  CAS  PubMed  Google Scholar 

  61. Jahidin AH, Taib MN, Ali MSAM., Tahir NM, Lias S, Haron MH, Isa RM, Omar WRW, Fuad N (2013) Evaluation of brainwave sub-band spectral centroid in human intelligence. In: 2013 IEEE 9th International Colloquium on Signal Processing and Its Applications (Cspa), pp 295–298

  62. Levine SZ, Rabinowitz J (2009) A population-based examination of the role of years of education, age of onset, and sex on the course of schizophrenia. Psychiatry Res 168:11–17

    Article  PubMed  Google Scholar 

  63. Weinberger DR, Berman KF, Suddath R, Torrey EF (1992) Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am J Psychiatry 149:890–897

    Article  CAS  PubMed  Google Scholar 

  64. Liddle PF (1996) Functional imaging–schizophrenia. Br Med Bull 52:486–494

    Article  CAS  PubMed  Google Scholar 

  65. Andreasen NC (2000) Schizophrenia: the fundamental questions. Brain Res Brain Res Rev 31:106–112

    Article  CAS  PubMed  Google Scholar 

  66. Koenig T, Lehmann D, Saito N, Kuginuki T, Kinoshita T, Koukkou M (2001) Decreased functional connectivity of eeg theta-frequency activity in first-episode, neuroleptic-naive patients with schizophrenia: preliminary results. Schizophr Res 50:55–60

    Article  CAS  PubMed  Google Scholar 

  67. Meyer-Lindenberg A, Poline JB, Kohn PD, Holt JL, Egan MF, Weinberger DR, Berman KF (2001) Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. Am J Psychiatry 158:1809–1817

    Article  CAS  PubMed  Google Scholar 

  68. Malaspina D, Harkavy-Friedman J, Corcoran C, Mujica-Parodi L, Printz D, Gorman JM, Van Heertum R (2004) Resting neural activity distinguishes subgroups of schizophrenia patients. Biol Psychiatry 56:931–937

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bluhm RL, Miller J, Lanius RA, Osuch EA, Boksman K, Neufeld RW, Theberge J, Schaefer B, Williamson P (2007) Spontaneous low-frequency fluctuations in the bold signal in schizophrenic patients: anomalies in the default network. Schizophr Bull 33:1004–1012

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhou Y, Liang M, Jiang T, Tian L, Liu Y, Liu Z, Liu H, Kuang F (2007) Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fmri. Neurosci Lett 417:297–302

    Article  CAS  PubMed  Google Scholar 

  71. Zhou Y, Liang M, Tian L, Wang K, Hao Y, Liu H, Liu Z, Jiang T (2007) Functional disintegration in paranoid schizophrenia using resting-state fmri. Schizophr Res 97:194–205

    Article  PubMed  Google Scholar 

  72. Benetti S, Mechelli A, Picchioni M, Broome M, Williams S, McGuire P (2009) Functional integration between the posterior hippocampus and prefrontal cortex is impaired in both first episode schizophrenia and the at risk mental state. Brain 132:2426–2436

    Article  PubMed  Google Scholar 

  73. Salvador R, Sarro S, Gomar JJ, Ortiz-Gil J, Vila F, Capdevila A, Bullmore E, McKenna PJ, Pomarol-Clotet E (2010) Overall brain connectivity maps show cortico-subcortical abnormalities in schizophrenia. Hum brain Mapp 31:2003–2014

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rotarska-Jagiela A, van de Ven V, Oertel-Knochel V, Uhlhaas PJ, Vogeley K, Linden DE (2010) Resting-state functional network correlates of psychotic symptoms in schizophrenia. Schizophr Res 117:21–30

    Article  PubMed  Google Scholar 

  75. Camchong J, MacDonald AW III, Bell C, Mueller BA, Lim KO (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37:640–650

    Article  PubMed  Google Scholar 

  76. Andreou C, Nolte G, Leicht G, Polomac N, Hanganu-Opatz IL, Lambert M, Engel AK, Mulert C (2015) Increased resting-state gamma-band connectivity in first-episode schizophrenia. Schizophr Bull 41:930–939

    Article  PubMed  Google Scholar 

  77. Uhlhaas PJ (2011) The adolescent brain: Implications for the understanding, pathophysiology, and treatment of schizophrenia. Schizophr Bull 37:480–483

    Article  PubMed  PubMed Central  Google Scholar 

  78. Perrin JS, Leonard G, Perron M, Pike GB, Pitiot A, Richer L, Veillette S, Pausova Z, Paus T (2009) Sex differences in the growth of white matter during adolescence. NeuroImage 45:1055–1066

    Article  CAS  PubMed  Google Scholar 

  79. Uhlhaas PJ, Roux F, Singer W, Haenschel C, Sireteanu R, Rodriguez E (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci USA 106:9866–9871

    Article  PubMed  PubMed Central  Google Scholar 

  80. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nature Rev Neurosci 11:100–113

    Article  CAS  Google Scholar 

  81. Jentsch JD, Roth RH (1999) The neuropsychopharmacology of phencyclidine: from nmda receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 20:201–225

    Article  CAS  PubMed  Google Scholar 

  82. Lally N, Mullins PG, Roberts MV, Price D, Gruber T, Haenschel C (2014) Glutamatergic correlates of gamma-band oscillatory activity during cognition: a concurrent er-mrs and eeg study. NeuroImage 85(Pt 2):823–833

    Article  CAS  PubMed  Google Scholar 

  83. Gainetdinov RR, Mohn AR, Caron MG (2001) Genetic animal models: focus on schizophrenia. Trends Neurosci 24:527–533

    Article  CAS  PubMed  Google Scholar 

  84. Jones CA, Watson DJ, Fone KC (2011) Animal models of schizophrenia. Br J Pharmacol 164:1162–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Diez A, Suazo V, Casado P, Martin-Loeches M, Molina V (2014) Gamma power and cognition in patients with schizophrenia and their first-degree relatives. Neuropsychobiology 69:120–128

    Article  PubMed  Google Scholar 

  86. Diez A, Suazo V, Casado P, Martin-Loeches M, Perea MV, Molina V (2014) Frontal gamma noise power and cognitive domains in schizophrenia. Psychiatry Res 221:104–113

    Article  PubMed  Google Scholar 

  87. Pearlson GD, Petty RG, Ross CA, Tien AY (1996) Schizophrenia: a disease of heteromodal association cortex? Neuropsychopharmacology 14:1–17

    Article  CAS  PubMed  Google Scholar 

  88. Uhlhaas PJ, Singer W (2012) Neuronal dynamics and neuropsychiatric disorders: toward a translational paradigm for dysfunctional large-scale networks. Neuron 75:963–980

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Hungarian National Brain Research Program (KTIA_NAP_13-1-2013-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Máté Baradits.

Ethics declarations

Conflict of interest

None of the authors declared conflict of interest with regard to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baradits, M., Kakuszi, B., Bálint, S. et al. Alterations in resting-state gamma activity in patients with schizophrenia: a high-density EEG study. Eur Arch Psychiatry Clin Neurosci 269, 429–437 (2019). https://doi.org/10.1007/s00406-018-0889-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-018-0889-z

Keywords

Navigation