Skip to main content
Log in

Fast sleep spindle reduction in schizophrenia and healthy first-degree relatives: association with impaired cognitive function and potential intermediate phenotype

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Several studies in patients with schizophrenia reported a marked reduction in sleep spindle activity. To investigate whether the reduction may be linked to genetic risk of the illness, we analysed sleep spindle activity in healthy volunteers, patients with schizophrenia and first-degree relatives, who share an enriched set of schizophrenia susceptibility genes. We further investigated the correlation of spindle activity with cognitive function in first-degree relatives and whether spindle abnormalities affect both fast (12–15 Hz) and slow (9–12 Hz) sleep spindles. We investigated fast and slow sleep spindle activity during non-rapid eye movement sleep in a total of 47 subjects comprising 17 patients with schizophrenia, 13 healthy first-degree relatives and 17 healthy volunteers. Groups were balanced for age, gender, years of education and estimated verbal IQ. A subsample of relatives received additional testing for memory performance. Compared to healthy volunteers, fast spindle density was reduced in patients with schizophrenia and healthy first-degree relatives following a pattern consistent with an assumed genetic load for schizophrenia. The deficit in spindle density was specific to fast spindles and was associated with decreased memory performance. Our findings indicate familial occurrence of this phenotype and thus support the hypothesis that deficient spindle activity relates to genetic liability for schizophrenia. Furthermore, spindle reductions predict impaired cognitive function and are specific to fast spindles. This physiological marker should be further investigated as an intermediate phenotype of schizophrenia. It could also constitute a target for drug development, especially with regard to cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ambrosius U, Lietzenmaier S, Wehrle R, Wichniak A, Kalus S, Winkelmann J, Bettecken T, Holsboer F, Yassouridis A, Friess E (2008) Heritability of sleep electroencephalogram. Biol Psychiatry 64:344–348

    Article  PubMed  Google Scholar 

  2. Anderer P, Klosch G, Gruber G, Trenker E, Pascual-Marqui RD, Zeitlhofer J, Barbanoj MJ, Rappelsberger P, Saletu B (2001) Low-resolution brain electromagnetic tomography revealed simultaneously active frontal and parietal sleep spindle sources in the human cortex. Neuroscience 103:581–592

    Article  CAS  PubMed  Google Scholar 

  3. Andreasen NC, Arndt S, Swayze V II, Cizadlo T, Flaum M, O’Leary D, Ehrhardt JC, Yuh WT (1994) Thalamic abnormalities in schizophrenia visualized through magnetic resonance image averaging. Science 266:294–298

    Article  CAS  PubMed  Google Scholar 

  4. Andrillon T, Nir Y, Staba RJ, Ferrarelli F, Cirelli C, Tononi G, Fried I (2011) Sleep spindles in humans: insights from intracranial EEG and unit recordings. J Neurosci 31:17821–17834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Astori S, Wimmer RD, Prosser HM, Corti C, Corsi M, Liaudet N, Volterra A, Franken P, Adelman JP, Luthi A (2011) The CaV3.3 calcium channel is the major sleep spindle pacemaker in thalamus. Proc Natl Acad Sci USA 108:13823–13828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buchmann A, Dentico D, Peterson MJ, Riedner BA, Sarasso S, Massimini M, Tononi G, Ferrarelli F (2014) Reduced mediodorsal thalamic volume and prefrontal cortical spindle activity in schizophrenia. NeuroImage 102(Pt 2):540–547

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chouinard S, Poulin J, Stip E, Godbout R (2004) Sleep in untreated patients with schizophrenia: a meta-analysis. Schizophr Bull 30:957–967

    Article  PubMed  Google Scholar 

  8. Cirelli C, Tononi G (2015) Cortical development, electroencephalogram rhythms, and the sleep/wake cycle. Biol Psychiatry 77:1071–1078

    Article  PubMed  Google Scholar 

  9. Clemens Z, Fabo D, Halasz P (2005) Overnight verbal memory retention correlates with the number of sleep spindles. Neuroscience 132:529–535

    Article  CAS  PubMed  Google Scholar 

  10. Cohen SM, Tsien RW, Goff DC, Halassa MM (2015) The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res 167:98–107

    Article  PubMed  PubMed Central  Google Scholar 

  11. Contreras D, Destexhe A, Sejnowski TJ, Steriade M (1997) Spatiotemporal patterns of spindle oscillations in cortex and thalamus. J Neurosci 17:1179–1196

    CAS  PubMed  Google Scholar 

  12. De Gennaro L, Ferrara M (2003) Sleep spindles: an overview. Sleep Med Rev 7:423–440

    Article  PubMed  Google Scholar 

  13. De Gennaro L, Marzano C, Fratello F, Moroni F, Pellicciari MC, Ferlazzo F, Costa S, Couyoumdjian A, Curcio G, Sforza E, Malafosse A, Finelli LA, Pasqualetti P, Ferrara M, Bertini M, Rossini PM (2008) The electroencephalographic fingerprint of sleep is genetically determined: a twin study. Ann Neurol 64:455–460

    Article  PubMed  Google Scholar 

  14. Destexhe A, Contreras D, Steriade M (1999) Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience 92:427–443

    Article  CAS  PubMed  Google Scholar 

  15. Diekelmann S, Wilhelm I, Born J (2009) The whats and whens of sleep-dependent memory consolidation. Sleep Med Rev 13:309–321

    Article  PubMed  Google Scholar 

  16. Ferrarelli F (2015) Sleep in patients with schizophrenia. Curr Sleep Med Rep 1:150–156

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferrarelli F, Huber R, Peterson MJ, Massimini M, Murphy M, Riedner BA, Watson A, Bria P, Tononi G (2007) Reduced sleep spindle activity in schizophrenia patients. Am J Psychiatry 164:483–492

    Article  PubMed  Google Scholar 

  18. Ferrarelli F, Peterson MJ, Sarasso S, Riedner BA, Murphy MJ, Benca RM, Bria P, Kalin NH, Tononi G (2010) Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatry 167:1339–1348

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferrarelli F, Tononi G (2011) The thalamic reticular nucleus and schizophrenia. Schizophr Bull 37:306–315

    Article  PubMed  Google Scholar 

  20. Fogel SM, Nader R, Cote KA, Smith CT (2007) Sleep spindles and learning potential. Behav Neurosci 121:1–10

    Article  CAS  PubMed  Google Scholar 

  21. Fogel SM, Smith CT (2011) The function of the sleep spindle: a physiological index of intelligence and a mechanism for sleep-dependent memory consolidation. Neurosci Biobehav Rev 35:1154–1165

    Article  PubMed  Google Scholar 

  22. Fuentealba P, Steriade M (2005) The reticular nucleus revisited: intrinsic and network properties of a thalamic pacemaker. Prog Neurobiol 75:125–141

    Article  CAS  PubMed  Google Scholar 

  23. Gais S, Molle M, Helms K, Born J (2002) Learning-dependent increases in sleep spindle density. J Neurosci 22:6830–6834

    CAS  PubMed  Google Scholar 

  24. Gardner RJ, Hughes SW, Jones MW (2013) Differential spike timing and phase dynamics of reticular thalamic and prefrontal cortical neuronal populations during sleep spindles. J Neurosci 33:18469–18480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gardner RJ, Kersante F, Jones MW, Bartsch U (2014) Neural oscillations during non-rapid eye movement sleep as biomarkers of circuit dysfunction in schizophrenia. Eur J Neurosci 39:1091–1106

    Article  PubMed  Google Scholar 

  26. Gertheiss J (2014) Anova for factors with ordered levels. J Agric Biol Environ Stat 19:258–277

    Article  Google Scholar 

  27. Gertheiss J (2013) Ordpens: selection and/or smoothing of ordinal predictors, r package version 0.2-1

  28. Göder R, Fritzer G, Gottwald B, Lippmann B, Seeck-Hirschner M, Serafin I, Aldenhoff JB (2008) Effects of olanzapine on slow wave sleep, sleep spindles and sleep-related memory consolidation in schizophrenia. Pharmacopsychiatry 41:92–99

    Article  PubMed  Google Scholar 

  29. Goder R, Graf A, Ballhausen F, Weinhold S, Baier PC, Junghanns K, Prehn-Kristensen A (2015) Impairment of sleep-related memory consolidation in schizophrenia: relevance of sleep spindles? Sleep Med 16:564–569

    Article  PubMed  Google Scholar 

  30. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  31. Gruber GAP, Parapatics S, Saletu B, Schabus M, Klimesch W, Klösch G, Sauter C, Zeitlhofer J (2015) Involvement of sleep spindles in overnight declarative memory stabilization. Somnologie 1:30–37

    Article  Google Scholar 

  32. Hanganu-Opatz IL (2010) Between molecules and experience: role of early patterns of coordinated activity for the development of cortical maps and sensory abilities. Brain Res Rev 64:160–176

    Article  PubMed  Google Scholar 

  33. Hiatt JF, Floyd TC, Katz PH, Feinberg I (1985) Further evidence of abnormal non-rapid-eye-movement sleep in schizophrenia. Arch Gen Psychiatry 42:797–802

    Article  CAS  PubMed  Google Scholar 

  34. Iber C, Ancoli-Israel S, Chesson A, Quan SFftAAoSM (2007) The aasm manual for the scoring of sleep and associated events: rules, terminology, and technical specifications. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  35. Irish Schizophrenia Genomics C, the Wellcome Trust Case Control C (2012) Genome-wide association study implicates hla-c*01:02 as a risk factor at the major histocompatibility complex locus in schizophrenia. Biol Psychiatry 72:620–628

    Article  Google Scholar 

  36. Keshavan MS, Montrose DM, Miewald JM, Jindal RD (2011) Sleep correlates of cognition in early course psychotic disorders. Schizophr Res 131:231–234

    Article  PubMed  PubMed Central  Google Scholar 

  37. Keshavan MS, Reynolds CF 3rd, Miewald MJ, Montrose DM, Sweeney JA, Vasko RC Jr, Kupfer DJ (1998) Delta sleep deficits in schizophrenia: evidence from automated analyses of sleep data. Arch Gen Psychiatry 55:443–448

    Article  CAS  PubMed  Google Scholar 

  38. Klingner CM, Langbein K, Dietzek M, Smesny S, Witte OW, Sauer H, Nenadic I (2014) Thalamocortical connectivity during resting state in schizophrenia. Eur Arch Psychiatry Clin Neurosci 264:111–119

    Article  PubMed  Google Scholar 

  39. Lustenberger C, O’Gorman RL, Pugin F, Tushaus L, Wehrle F, Achermann P, Huber R (2015) Sleep spindles are related to schizotypal personality traits and thalamic glutamine/glutamate in healthy subjects. Schizophr Bull 41:522–531

    Article  PubMed  Google Scholar 

  40. Manoach DS, Demanuele C, Wamsley EJ, Vangel M, Montrose DM, Miewald J, Kupfer D, Buysse D, Stickgold R, Keshavan MS (2014) Sleep spindle deficits in antipsychotic-naive early course schizophrenia and in non-psychotic first-degree relatives. Front Hum Neurosci 8:762

    Article  PubMed  PubMed Central  Google Scholar 

  41. Manoach DS, Thakkar KN, Stroynowski E, Ely A, McKinley SK, Wamsley E, Djonlagic I, Vangel MG, Goff DC, Stickgold R (2010) Reduced overnight consolidation of procedural learning in chronic medicated schizophrenia is related to specific sleep stages. J Psychiatr Res 44:112–120

    Article  PubMed  Google Scholar 

  42. Marshall L, Kirov R, Brade J, Molle M, Born J (2011) Transcranial electrical currents to probe eeg brain rhythms and memory consolidation during sleep in humans. PLoS ONE 6:e16905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mednick SC, McDevitt EA, Walsh JK, Wamsley E, Paulus M, Kanady JC, Drummond SP (2013) The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study. J Neurosci 33:4494–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 7:818–827

    Article  CAS  PubMed  Google Scholar 

  45. Molle M, Bergmann TO, Marshall L, Born J (2011) Fast and slow spindles during the sleep slow oscillation: disparate coalescence and engagement in memory processing. Sleep 34:1411–1421

    PubMed  PubMed Central  Google Scholar 

  46. Molle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 22:10941–10947

    CAS  PubMed  Google Scholar 

  47. Muller H, Hasse-Sander I, Horn R, Helmstaedter C, Elger CE (1997) Rey auditory-verbal learning test: structure of a modified german version. J Clin Psychol 53:663–671

    Article  CAS  PubMed  Google Scholar 

  48. Ngo HV, Martinetz T, Born J, Molle M (2013) Auditory closed-loop stimulation of the sleep slow oscillation enhances memory. Neuron 78:545–553

    Article  CAS  PubMed  Google Scholar 

  49. Nishida M, Nakashima Y, Nishikawa T (2014) Topographical distribution of fast and slow sleep spindles in medicated depressive patients. J Clin Neurophysiol 31:402–408

    Article  PubMed  Google Scholar 

  50. Pinault D (2011) Dysfunctional thalamus-related networks in schizophrenia. Schizophr Bull 37:238–243

    Article  PubMed  PubMed Central  Google Scholar 

  51. Plante DT, Goldstein MR, Landsness EC, Peterson MJ, Riedner BA, Ferrarelli F, Wanger T, Guokas JJ, Tononi G, Benca RM (2013) Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation. J Affect Disord 146:120–125

    Article  CAS  PubMed  Google Scholar 

  52. Poulin J, Daoust AM, Forest G, Stip E, Godbout R (2003) Sleep architecture and its clinical correlates in first episode and neuroleptic-naive patients with schizophrenia. Schizophr Res 62:147–153

    Article  PubMed  Google Scholar 

  53. Raine A (1991) The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophr Bull 17:555–564

    Article  CAS  PubMed  Google Scholar 

  54. Rosanova M, Ulrich D (2005) Pattern-specific associative long-term potentiation induced by a sleep spindle-related spike train. J Neurosci 25:9398–9405

    Article  CAS  PubMed  Google Scholar 

  55. Schabus M, Dang-Vu TT, Albouy G, Balteau E, Boly M, Carrier J, Darsaud A, Degueldre C, Desseilles M, Gais S, Phillips C, Rauchs G, Schnakers C, Sterpenich V, Vandewalle G, Luxen A, Maquet P (2007) Hemodynamic cerebral correlates of sleep spindles during human non-rapid eye movement sleep. Proc Natl Acad Sci USA 104:13164–13169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schabus M, Gruber G, Parapatics S, Sauter C, Klosch G, Anderer P, Klimesch W, Saletu B, Zeitlhofer J (2004) Sleep spindles and their significance for declarative memory consolidation. Sleep 27:1479–1485

    PubMed  Google Scholar 

  57. Schabus M, Hodlmoser K, Gruber G, Sauter C, Anderer P, Klosch G, Parapatics S, Saletu B, Klimesch W, Zeitlhofer J (2006) Sleep spindle-related activity in the human eeg and its relation to general cognitive and learning abilities. Eur J Neurosci 23:1738–1746

    Article  CAS  PubMed  Google Scholar 

  58. Schizophrenia Working Group of the Psychiatric Genomics C (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–427

    Article  Google Scholar 

  59. Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154

    Article  PubMed  Google Scholar 

  60. Seeck-Hirschner M, Baier PC, Sever S, Buschbacher A, Aldenhoff JB, Goder R (2010) Effects of daytime naps on procedural and declarative memory in patients with schizophrenia. J Psychiatr Res 44:42–47

    Article  PubMed  Google Scholar 

  61. Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–1128

    Article  CAS  PubMed  Google Scholar 

  62. Sim K, Cullen T, Ongur D, Heckers S (2006) Testing models of thalamic dysfunction in schizophrenia using neuroimaging. J Neural Transm 113:907–928

    Article  CAS  PubMed  Google Scholar 

  63. Tamaki M, Matsuoka T, Nittono H, Hori T (2008) Fast sleep spindle (13–15 hz) activity correlates with sleep-dependent improvement in visuomotor performance. Sleep 31:204–211

    PubMed  PubMed Central  Google Scholar 

  64. Tandon R, Shipley JE, Taylor S, Greden JF, Eiser A, DeQuardo J, Goodson J (1992) Electroencephalographic sleep abnormalities in schizophrenia. Relationship to positive/negative symptoms and prior neuroleptic treatment. Arch Gen Psychiatry 49:185–194

    Article  CAS  PubMed  Google Scholar 

  65. Tesler N, Gerstenberg M, Franscini M, Jenni OG, Walitza S, Huber R (2015) Reduced sleep spindle density in early onset schizophrenia: a preliminary finding. Schizophr Res 166:355–357

    Article  PubMed  Google Scholar 

  66. Ujma PP, Gombos F, Genzel L, Konrad BN, Simor P, Steiger A, Dresler M, Bódizs R (2015) A comparison of two sleep spindle detection methods based on all night averages: individually adjusted versus fixed frequencies. Front Human Neurosci 9:52

    Google Scholar 

  67. Van Cauter E, Linkowski P, Kerkhofs M, Hubain P, L’Hermite-Baleriaux M, Leclercq R, Brasseur M, Copinschi G, Mendlewicz J (1991) Circadian and sleep-related endocrine rhythms in schizophrenia. Arch Gen Psychiatry 48:348–356

    Article  PubMed  Google Scholar 

  68. Vukadinovic Z (2014) Nmda receptor hypofunction and the thalamus in schizophrenia. Physiol Behav 131:156–159

    Article  CAS  PubMed  Google Scholar 

  69. Vukadinovic Z (2011) Sleep abnormalities in schizophrenia may suggest impaired trans-thalamic cortico-cortical communication: towards a dynamic model of the illness. Eur J Neurosci 34:1031–1039

    Article  PubMed  Google Scholar 

  70. Vukadinovic Z (2015) Sleep spindle reductions in schizophrenia and its implications for the development of cortical body map. Schizophr Res 168:589–590

    Article  PubMed  Google Scholar 

  71. Wamsley EJ, Shinn AK, Tucker MA, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS (2013) The effects of eszopiclone on sleep spindles and memory consolidation in schizophrenia: a randomized placebo-controlled trial. Sleep 36:1369–1376

    PubMed  PubMed Central  Google Scholar 

  72. Wamsley EJ, Tucker MA, Shinn AK, Ono KE, McKinley SK, Ely AV, Goff DC, Stickgold R, Manoach DS (2012) Reduced sleep spindles and spindle coherence in schizophrenia: mechanisms of impaired memory consolidation? Biol Psychiatry 71:154–161

    Article  PubMed  Google Scholar 

  73. Yang C, Winkelman JW (2006) Clinical significance of sleep eeg abnormalities in chronic schizophrenia. Schizophr Res 82:251–260

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ines Wilhelm, Amr Ayoub, Matthias Mölle (Center of Brain, Behavior and Metabolism, University of Luebeck, 23562 Luebeck, Germany) and Jan Born (Institute for Medical Psychology and Behavioural Neurobiology, University of Tuebingen, 72076 Tuebingen, Germany) for their valuable support with the spindle detection algorithm. CS acknowledges grant support from the Olympia-Morata-Programme of the University of Heidelberg, Germany. AM-L acknowledges funding from the German Federal Ministry of Education and Research (BMBF) Grant No. 01ZX1314G and partly Grant No. 01GS08147 (MooDs). HT gratefully acknowledges grant support by the German Federal Ministry of Education and Research (BMBF) Grant No. 01GQ1102. SE acknowledges grant support from the University of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Schilling.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare related to this work. There was no funding for this study. A. Meyer-Lindenberg received the following Grants: ECNP Neuropsychopharmacology Award, Prix ROGER DE SPOELBERCH. A. Meyer-Lindenberg received consultancy fees from Astra Zeneca, Elsevier, F. Hoffmann-La Roche, Gerson Lehrman Group, Lundbeck foundation, Outcome Europe Sárl, Outcome Sciences, Roche Pharma, Servier International and Thieme Verlag, and lecture fees—including the travel fees—from Abbott, Astra Zeneca, Aula Médica Congresos, BASF, Groupo Ferrer International, Janssen-Cilag, Lilly Deutschland, LVR Klinikum Düsseldorf, Servier Deutschland and Otsuka Pharmaceuticals. C. Schilling received remuneration for advisory board participation from Vanda Pharmaceuticals. M. Deuschle received speaker fees from Astra-Zeneca, Bristol-Myers Squibb and Lundbeck, Mundipharma and honoraria for consultation from Lundbeck. M. Deuschle participated in phase II/III trials by Janssen and Lilly. M. Zink received unrestricted scientific grants of the German Research Foundation (DFG) and Servier; further speaker and travel grants were provided from Pfizer Pharma GmbH, Bristol Myers Squibb Pharmaceuticals, Otsuka, Servier, Lundbeck, Janssen Cilag, Roche, Ferrer and Trommsdorff. S. Englisch received travel expenses and consultant fees from AstraZeneca, Bristol-Myers Squibb GmbH & CoKGaA, Eli-Lilly, Janssen Cilag, Otsuka Pharma, Pfizer Pharma and Servier.

Ethical standards

The study was approved by the local ethic committee of the Medical Faculty Mannheim of the University of Heidelberg (AZ 2010-208 N-MA and 2007-250 N-MA) and has therefore been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments. All participants were informed about the aims and procedures of the study and gave their written consent prior to the investigation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilling, C., Schlipf, M., Spietzack, S. et al. Fast sleep spindle reduction in schizophrenia and healthy first-degree relatives: association with impaired cognitive function and potential intermediate phenotype. Eur Arch Psychiatry Clin Neurosci 267, 213–224 (2017). https://doi.org/10.1007/s00406-016-0725-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-016-0725-2

Keywords

Navigation