Skip to main content
Log in

Effectiveness of submucosal turbinoplasty in refractory obstructive rhinitis: a prospective comparative trial

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Objective

Refractory inferior turbinate hypertrophy requires a surgical approach to address symptomatic complaints. Submucosal approaches demonstrated their efficacy in restoring respiratory function and respecting the nasal mucosa. Microdebrider-assisted turbinoplasty (MAT) tools effectively reduces the soft tissue, exploiting a very different principle from the kinetic energy of radiofrequency. Thus, we aimed to compare the microdebrider-assisted turbinoplasty and the quantum molecular resonance (QMR) to assess patients' perspectives and respiratory outcomes.

Methods

Subjects with persistent bilateral nasal blockage due to inferior turbinates hypertrophy were prospectively recruited from the University Medical Center. We randomly assigned the patients to each treatment and performed symptom evaluation via the visual analog score and endoscopic assessment at baseline and 30-, 90-, and 180-day post-treatment.

Results

Seventy participants completed the evaluations, 35 in MAT and 35 in the QMR group. Nasal complaints were significantly reduced after 1 month using both methods. Although the MAT group reported higher postoperative bleeding and edema than QMR group, similar significant reductions were seen for turbinate size at long-term follow-up. Conversely, the MAT group reported greater VAS outcomes than QMR from the first postoperative month. In addition, MAT showed a longer operating time, although this difference was not statistically significant (p < 0.05).

Conclusion

MAT allows effective control of nasal symptoms by reducing the size of turbinates in patients with lower turbinate hypertrophy. Although QMR may cause fewer postoperative complications, functional results are comparable to long-term follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Maniaci A, Di Luca M, La Mantia I, Grillo C, Grillo CM, Privitera E, Vicini C, Iannella G, Renna C, Bannò V, Migliore F, Cocuzza S (2021) Surgical treatment for the refractory allergic rhinitis: state of the art. Allergies 1(1):48–62. https://doi.org/10.3390/allergies1010005

    Article  Google Scholar 

  2. Bhandarkar ND, Smith TL (2010) Outcomes of surgery for inferior turbinate hypertrophy. Curr Opin Otolaryngol Head Neck Surg 18(1):49–53. https://doi.org/10.1097/MOO.0b013e328334d974

    Article  PubMed  Google Scholar 

  3. Cocuzza S, Maniaci A, Di Luca M et al (2020) Long-term results of nasal surgery: comparison of mini-invasive turbinoplasty. J Biol Regul Homeost Agents 34(3):1203–1208. https://doi.org/10.23812/19-522-L-4

    Article  CAS  PubMed  Google Scholar 

  4. Ye T, Zhou B (2015) Update on surgical management of adult inferior turbinate hypertrophy. Curr Opin Otolaryngol Head Neck Surg 23(1):29–33. https://doi.org/10.1097/MOO.0000000000000130

    Article  PubMed  Google Scholar 

  5. Lin HC, Lin PW, Su CY, Chang HW (2003) Radiofrequency for the treatment of allergic rhinitis refractory to medical therapy. Laryngoscope 113(4):673–678. https://doi.org/10.1097/00005537-200304000-00017

    Article  CAS  PubMed  Google Scholar 

  6. Jose J, Coatesworth AP (2010) Inferior turbinate surgery for nasal obstruction in allergic rhinitis after failed medical treatment. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005235.pub2

    Article  PubMed  Google Scholar 

  7. Türk B, Korkut AY, Kaya KS et al (2018) Results of radiofrequency ablation of inferior turbinate hypertrophy in patients with allergic and non-allergic Rhinitis. Sisli Etfal Hastan Tip Bul. 52(4):296–301. https://doi.org/10.14744/SEMB.2018.77992

    Article  PubMed  PubMed Central  Google Scholar 

  8. Scott JR, Psaltis AJ, Wormald PJ (2020) Vascular anatomy of the inferior turbinate and its clinical implications [published correction appears in Am J Rhinol Allergy. 2021 May;35(3):408]. Am J Rhinol Allergy 34(5):604–609. https://doi.org/10.1177/1945892420914185

    Article  PubMed  Google Scholar 

  9. Brunworth J, Holmes J, Sindwani R (2013) Inferior turbinate hypertrophy: review and graduated approach to surgical management. Am J Rhinol Allergy 27(5):411–415. https://doi.org/10.2500/ajra.2013.27.3912

    Article  PubMed  Google Scholar 

  10. Lorenz KJ, Maier H (2013) Shaver-turbinoplastik. Minimalinvasives verfahren zur therapie der behinderten nasenatmung bei vergrösserten nasenmuscheln [Microdebrider-assisted inferior turbinoplasty. Minimally invasive technique for the treatment of nasal airway obstruction caused by enlarged turbinates]. HNO 61(3):240–249. https://doi.org/10.1007/s00106-012-2553-7

    Article  CAS  PubMed  Google Scholar 

  11. Sinno S, Mehta K, Lee ZH, Kidwai S, Saadeh PB, Lee MR (2016) Inferior turbinate hypertrophy in rhinoplasty: systematic review of surgical techniques. Plast Reconstr Surg 138(3):419e–429e. https://doi.org/10.1097/PRS.0000000000002433

    Article  CAS  PubMed  Google Scholar 

  12. Acevedo JL, Camacho M, Brietzke SE (2015) Radiofrequency ablation turbinoplasty versus microdebrider-assisted turbinoplasty: a systematic review and meta-analysis. Otolaryngol Head Neck Surg 153(6):951–956. https://doi.org/10.1177/0194599815607211

    Article  PubMed  Google Scholar 

  13. Gupta P, Kc T, Regmi D (2018) Diode laser turbinate reduction in allergic rhinitis: a cross-sectional study. JNMA J Nepal Med Assoc 56(214):949–952

    Article  Google Scholar 

  14. Eser BC, İlhan AE (2021) Inferior turbinate surgery with a piezo device in rhinoplasty. Facial Plast Surg Aesthet Med 23(1):70–72. https://doi.org/10.1089/fpsam.2020.0015

    Article  PubMed  Google Scholar 

  15. Karakurt SE, Çetin MA, Apaydın E, İkincioğulları A, Ensari S, Dere HH (2021) Does inferior turbinate outfracture provide additional benefit when combined with inferior turbinate radiofrequency ablation? Eur Arch Otorhinolaryngol 278(8):2869–2874. https://doi.org/10.1007/s00405-020-06556-w

    Article  PubMed  Google Scholar 

  16. Gindros G, Kantas I, Balatsouras DG, Kaidoglou A, Kandiloros D (2010) Comparison of ultrasound turbinate reduction, radiofrequency tissue ablation and submucosal cauterization in inferior turbinate hypertrophy. Eur Arch Otorhinolaryngol 267(11):1727–1733. https://doi.org/10.1007/s00405-010-1260-9

    Article  PubMed  Google Scholar 

  17. De Corso E, Bastanza G, Di Donfrancesco V et al (2016) Radiofrequency volumetric inferior turbinate reduction: long-term clinical results. Riduzione volumetrica dei turbinati inferiori con radiofrequenze: risultati clinici a lungo termine. Acta Otorhinolaryngol Ital 36(3):199–205. https://doi.org/10.14639/0392-100X-964

    Article  PubMed  PubMed Central  Google Scholar 

  18. McCoul ED, Todd CA, Riley CA (2019) Posterior inferior turbinate hypertrophy (PITH). Otolaryngol Head Neck Surg 160(2):343–346. https://doi.org/10.1177/0194599818805006

    Article  PubMed  Google Scholar 

  19. Singh S, Ramli RR, Wan Mohammad Z, Abdullah B (2020) Coblation versus microdebrider-assisted turbinoplasty for endoscopic inferior turbinates reduction. Auris Nasus Larynx 47(4):593–601. https://doi.org/10.1016/j.anl.2020.02.003

    Article  PubMed  Google Scholar 

  20. Chen YL, Liu CM, Huang HM (2007) Comparison of microdebrider-assisted inferior turbinoplasty and submucosal resection for children with hypertrophic inferior turbinates. Int J Pediatr Otorhinolaryngol 71(6):921–927. https://doi.org/10.1016/j.ijporl.2007.03.002

    Article  PubMed  Google Scholar 

  21. Romano A, Orabona GD, Salzano G, Abbate V, Iaconetta G, Califano L (2015) Comparative study between partial inferior turbinotomy and microdebrider-assisted inferior turbinoplasty. J Craniofac Surg 26(3):e235–e238. https://doi.org/10.1097/SCS.0000000000001500

    Article  PubMed  Google Scholar 

  22. Lee JY, Lee JD (2006) Comparative study on the long-term effectiveness between coblation- and microdebrider-assisted partial turbinoplasty. Laryngoscope 116(5):729–734. https://doi.org/10.1097/01.mlg.0000205140.44181.45

    Article  PubMed  Google Scholar 

  23. Chen YL, Tan CT, Huang HM (2018) Long-term efficacy of microdebrider-assisted inferior turbinoplasty with lateralization for hypertrophic inferior turbinates in patients with perennial allergic rhinitis. Laryngoscope 118(7):1270–1274

    Article  Google Scholar 

  24. von Elm E, Altman DG, Egger M et al (2014) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg 12(12):1495–1499. https://doi.org/10.1016/j.ijsu.2014.07.013

    Article  Google Scholar 

  25. Seidman MD, Gurgel RK, Lin SY et al (2015) Clinical practice guideline: allergic rhinitis. Otolaryngol Head Neck Surg 152(1 Suppl):S1–S43. https://doi.org/10.1177/0194599814561600

    Article  PubMed  Google Scholar 

  26. Bousquet JJ, Schünemann HJ, Togias A et al (2019) Next-generation ARIA care pathways for rhinitis and asthma: a model for multimorbid chronic diseases. Clin Transl Allergy 9:44. https://doi.org/10.1186/s13601-019-0279-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camacho M, Zaghi S, Certal V et al (2015) Inferior turbinate classification system, grades 1 to 4: development and validation study. Laryngoscope 125(2):296–302. https://doi.org/10.1002/lary.24923

    Article  PubMed  Google Scholar 

  28. Clement PA, Gordts F, Standardisation Committee on Objective Assessment of the Nasal Airway, IRS, and ERS (2005) Consensus report on acoustic rhinometry and rhinomanometry. Rhinology 43(3):169–179

    CAS  PubMed  Google Scholar 

  29. Gelardi M, Iannuzzi L, Quaranta N, Landi M, Passalacqua G (2016) NASAL cytology: practical aspects and clinical relevance. Clin Exp Allergy 46(6):785–792. https://doi.org/10.1111/cea.12730

    Article  CAS  PubMed  Google Scholar 

  30. Ricciardiello F, Pisani D, Viola P et al (2021) The role of quantic molecular resonance (QMR) in the treatment of inferior turbinate hypertrophy (ITH): our experience with long-term follow-up in allergic and nonallergic rhinitis refractory to medical therapy. Preliminary results. Ear Nose Throat J. https://doi.org/10.1177/01455613211001599 (published online ahead of print, 2021 June 3)

    Article  PubMed  Google Scholar 

  31. Tirelli G, Gatto A, Spinato G, Tofanelli M (2013) Surgical treatment of nasal polyposis: a comparison between cutting forceps and microdebrider. Am J Rhinol Allergy 27(6):e202–e206. https://doi.org/10.2500/ajra.2013.27.3966

    Article  PubMed  Google Scholar 

  32. Vijay Kumar K, Kumar S, Garg S (2014) A comparative study of radiofrequency assisted versus microdebrider assisted turbinoplasty in cases of inferior turbinate hypertrophy. Indian J Otolaryngol Head Neck Surg 66(1):35–39. https://doi.org/10.1007/s12070-013-0657-3

    Article  CAS  PubMed  Google Scholar 

  33. Lukka VK, Kurien R, Varghese L, Rupa V (2019) Endoscopic submucosal resection versus endoscopic submucosal diathermy for inferior turbinate hypertrophy. Indian J Otolaryngol Head Neck Surg 71(Suppl 3):1885–1894. https://doi.org/10.1007/s12070-018-1280-0

    Article  PubMed  Google Scholar 

  34. Gupta A, Mercurio E, Bielamowicz S (2001) Endoscopic inferior turbinate reduction: an outcomes analysis. Laryngoscope 111(11 Pt 1):1957–1959. https://doi.org/10.1097/00005537-200111000-00016

    Article  CAS  PubMed  Google Scholar 

  35. Di Rienzo BL, Di Rienzo BA, Ventura L, Laurino S, Lauriello M (2014) Turbinoplasty with quantic molecular resonance in the treatment of persistent moderate-severe allergic rhinitis: comparative analysis of efficacy. Am J Rhinol Allergy 28(2):164–168. https://doi.org/10.2500/ajra.2014.28.3990

    Article  Google Scholar 

  36. Cingi C, Ure B, Cakli H, Ozudogru E (2010) Microdebrider-assisted versus radiofrequency-assisted inferior turbinoplasty: a prospective study with objective and subjective outcome measures. Acta Otorhinolaryngol Ital 30(3):138–143

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Harju T, Honkanen M, Vippola M, Kivekäs I, Rautiainen M (2019) The effect of inferior turbinate surgery on ciliated epithelium: a randomized, blinded study. Laryngoscope 129(1):18–24. https://doi.org/10.1002/lary.27409

    Article  PubMed  Google Scholar 

  38. Akagün F, İmamoğlu M, Çobanoğlu HB, Ural A (2016) Comparison of radiofrequency thermal ablation and microdebrider-assisted turbinoplasty in inferior turbinate hypertrophy: a prospective, randomized, and clinical study. Turk Arch Otorhinolaryngol 54(3):118–123. https://doi.org/10.5152/tao.2016.1747

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu CM, Tan CD, Lee FP, Lin KN, Huang HM (2009) Microdebrider-assisted versus radiofrequency-assisted inferior turbinoplasty. Laryngoscope 119(2):414–418. https://doi.org/10.1002/lary.20088

    Article  PubMed  Google Scholar 

  40. Dogan R, Senturk E, Ozturan O, Yildirim YS, Tugrul S, Hafiz AM (2017) Conchal contractility after inferior turbinate hypertrophy treatment: a prospective, randomized clinical trial. Am J Otolaryngol 38:678–682

    Article  Google Scholar 

  41. Back LJ, Hytönen ML, Malmberg HO, Ylikoski JS (2002) Submucosal bipolar radiofrequency thermal ablation of inferior turbinates: a long-term follow-up with subjective and objective assessment. Laryngoscope 112:1806–1812

    Article  Google Scholar 

  42. Shah AN, Brewster D, Mitzen K, Mullin D (2015) Radiofrequency coblation versus intramural bipolar cautery for the treatment of inferior turbinate hypertrophy. Ann Otol Rhinol Laryngol 124(9):691–697

    Article  Google Scholar 

  43. Pecorari G, Riva G, Bartoli C et al (2021) Nasal cytology in radiofrequency turbinate volume reduction. ORL J Otorhinolaryngol Relat Spec 83(4):252–257. https://doi.org/10.1159/000513629

    Article  PubMed  Google Scholar 

  44. Calvo-Henriquez C, Mariño-Sánchez F, Lechien JR et al (2021) Radiofrequency ablation turbinoplasty improves the sense of smell in pediatric patients: a prospective study. Int J Pediatr Otorhinolaryngol 150:110935. https://doi.org/10.1016/j.ijporl.2021.110935

    Article  PubMed  Google Scholar 

  45. Lukka VK, Jacob TM, Jeyaseelan V, Rupa V (2018) Do turbinate reduction procedures restore epithelial integrity in patients with turbinate hypertrophy secondary to allergic rhinitis? A histopathological study. Eur Arch Otorhinolaryngol 275(6):1457–1467. https://doi.org/10.1007/s00405-018-4955-y

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Maniaci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maniaci, A., Lechien, J.R., La Mantia, I. et al. Effectiveness of submucosal turbinoplasty in refractory obstructive rhinitis: a prospective comparative trial. Eur Arch Otorhinolaryngol 279, 4397–4406 (2022). https://doi.org/10.1007/s00405-022-07267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-022-07267-0

Keywords

Navigation