Skip to main content
Log in

Clinical parameters influencing the results of anterior rhinomanometry in children

  • Rhinology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Background

Nasal obstruction is a frequent symptom in both adults and children and it is a common reason to see an otorhinolaryngologist. Endoscopy of the nasal cavity and the epipharyngeal space along with anterior rhinomanometry is regarded the gold standard since many years to estimate the severity of nasal obstruction in the particular patient. Endoscopy shows anatomical reasons for an obstruction, whereas the nasal flow volume and nasal resistance can be determined using anterior rhinomanometry. Currently, there are only few data available for rhinomanometry results in children. The purpose of the present study was to evaluate the application of this technique in the pediatric population for objective evaluation of nasal flow. Whether it achieves reproducible results and which clinical parameters have some influence on the results were studied.

Patients and methods

427 children (average age of 8.5 years, range 7 months through 17 years) who were admitted to evaluate nasal patency or for allergy testing were examined. After clinical examination and endoscopy of the nasal cavity and epipharyngeal space, anterior rhinomanometry was performed before and after application of decongestant nose drops separately for each nose side in 334 children. The nasal flow with a pressure of 150 Pasc was measured and served for statistical evaluation. Flow values were correlated to clinical and endoscopic parameters along with results of allergy tests (prick tests).

Results

Reproducible rhinomanometric measurements were possible in children age 3 years and older. However, the standard deviation and variation of measurements were significant in this cohort of patients. Statistically highest significant correlations were found between flow measurements and body height along with the age of the children (p < 0.01) and status following adenoidectomy (p < 0.05). No statistically significant correlations were found between rhinomanometry and results of prick tests.

Conclusions

The study demonstrates that rhinomanometry can be applied in the pediatric population for objective evaluation of nasal obstruction and for determining the effects of decongestant nose drops. The highest correlation was found between nasal flow and children’s body height, children’s age and status following adenoidectomy. The correlation between nasal flow and clinically/endoscopically determined degree of nasal obstruction was lower. However, definition of normal flow values for particular age groups is challenging since the results showed high variation and standard deviation. Yet with regard to individual patient, the technique achieves reliable results in nasal provocation tests, which are widely used for allergy testing in children. When performed in children it should always be considered that there are age-specific requirements for the examination and interpretation of results in this patient cohort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ottaviano G, Fokkens WJ (2016) Measurements of nasal airflow and patency: a critical review with emphasis on the use of peak nasal inspiratory flow in daily practice. Allergy 71(2):162–174. https://doi.org/10.1111/all.12778

    Article  CAS  PubMed  Google Scholar 

  2. Moreddu E, Meister L, Philip-Alliez C, Triglia JM, Medale M, Nicollas R (2019) Computational fluid dynamics in the assessment of nasal obstruction in children. Eur Ann Otorhinolaryngol Head Neck Dis 136(2):87–92. https://doi.org/10.1016/j.anorl.2018.11.008 (Epub 2018 Dec 4)

    Article  CAS  PubMed  Google Scholar 

  3. Zicari AM, Rugiano A, Ragusa G, Savastano V, Bertin S, Vittori T, Duse M (2013) The evaluation of adenoid hypertrophy and obstruction grading based on rhinomanometry after nasal decongestant test in children. Eur Rev Med Pharmacol Sci 17(21):2962–2967

    CAS  PubMed  Google Scholar 

  4. Kobayashi R, Miyazaki S, Karaki M, Hoshikawa H, Nakata S, Hara H, Kodama S, Kikuchi A, Kitamura T, Mori N (2014) Evaluation of adenotonsillectomy and tonsillectomy for pediatric obstructive sleep apnea by rhinomanometry and the OSA-18 questionnaire. Acta Otolaryngol 134(8):818–823. https://doi.org/10.3109/00016489.2014.905703 (Epub 2014 May 22)

    Article  PubMed  Google Scholar 

  5. Thulesius HL, Cervin A, Jessen M (2012) The importance of side difference in nasal obstruction and rhinomanometry: a retrospective correlation of symptoms and rhinomanometry in 1000 patients. Clin Otolaryngol 37(1):17–22. https://doi.org/10.1111/j.1749-4486.2011.02420.x

    Article  CAS  PubMed  Google Scholar 

  6. Zapletal A, Chalupová J (2002) Nasal airflow and resistance measured by active anterior rhinomanometry in healthy children and adolescents. Pediatr Pulmonol 33(3):174–180. https://doi.org/10.1002/ppul.10066

    Article  CAS  PubMed  Google Scholar 

  7. Occasi F, Duse M, Vittori T, Rugiano A, Tancredi G, De Castro G, Indinnimeo L, Zicari AM (2016) Primary school children often underestimate their nasal obstruction. Rhinology 54(2):164–169. https://doi.org/10.4193/Rhin15.120

    Article  PubMed  Google Scholar 

  8. Zicari AM, Magliulo G, Rugiano A, Ragusa G, Celani C, Carbone MP, Occasi F, Duse M (2012) The role of rhinomanometry after nasal decongestant test in the assessment of adenoid hypertrophy in children. Int J Pediatr Otorhinolaryngol 76(3):352–356. https://doi.org/10.1016/j.ijporl.2011.12.006 (Epub 2011 Dec 29)

    Article  CAS  PubMed  Google Scholar 

  9. Asher MI, Keil U, Anderson HR, Beasley R, Crane J, Martinez F, Mitschell EA, Pearce N, Sibbald B, Stewart AW, Strachan D, Weiland SK, Williams HC (1995) International study of asthma and allergies in childhood (ISAAC): rationale and methods. Eur Respir J 8:483–491

    Article  CAS  Google Scholar 

  10. Zicari AM, Occasi F, Montanari G, Indinnimeo L, De Castro G, Tancredi G, Duse M (2015) Intranasal budesonide in children affected by persistent allergic rhinitis and its effect on nasal patency and Nasal Obstruction Symptom Evaluation (NOSE) score. Curr Med Res Opin 31(3):391–396. https://doi.org/10.1185/03007995.2015.1009532 (Epub 2015 Feb 9)

    Article  CAS  PubMed  Google Scholar 

  11. Ruëff F, Bergmann KC, Brockow K, Fuchs T, Grübl A, Jung K, Klimek L, Müsken A, Pfaar O, Przybilla B, Sitter H, Wehrmann W (2010) Hauttests zur Diagnostik von allergischen Soforttypreaktionen. Allergo J 19:402–415

    Article  Google Scholar 

  12. Cilluffo G, Zicari AM, Ferrante G, Malizia V, Fasola S, Duse M, De Castro G, De Vittori V, Schiavi L, Brindisi G, Petrelli P, La Grutta S (2020) Assessing repeatability and reproducibility of Anterior Active Rhinomanometry (AAR) in children. BMC Med Res Methodol 20(1):86. https://doi.org/10.1186/s12874-020-00969-1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vogt K, Jalowayski AA, McDonough JM, Nandalike K, Arens R (2014) Anterior nasal resistance in obese children with obstructive sleep apnea syndrome. Laryngoscope 124:2640–2644

    Article  Google Scholar 

  14. Mendes AIS, Wandalsen GF, Solé D (2012) Objective and subjective assessments of nasal obstruction in children and adolescents with allergic rhinitis. J Pediatr (Rio J) 88(5):389–395. https://doi.org/10.2223/JPED.2213 (Epub 2012 Sep 22)

    Article  Google Scholar 

  15. Priftis KN, Drigopoulos K, Sakalidou A, Triga M, Kallis V, Nicolaidou P (2006) Subjective and objective nasal obstruction assessment in children with chronic rhinitis. Int J Pediatr Otorhinolaryngol 70(3):501–505. https://doi.org/10.1016/j.ijporl.2005.07.027 (Epub 2005 Sep 9)

    Article  PubMed  Google Scholar 

  16. Kobayashi R, Miyazaki S, Karaki M, Kobayashi E, Karaki R, Akiyama K, Matsubara AM, Mori N (2011) Measurement of nasal resistance by rhinomanometry in 892 Japanese elementary school children. Auris Nasus Larynx 38(1):73–76. https://doi.org/10.1016/j.anl.2010.06.002

    Article  PubMed  Google Scholar 

  17. Parker LP, Crysdale WS, Cole P, Woodside D (1989) Rhinomanometry in children. Int J Pediatr Otorhinolaryngol 17(2):127–137. https://doi.org/10.1016/0165-5876(89)90088-8

    Article  CAS  PubMed  Google Scholar 

  18. Saito A, Nishihata S (1981) Nasal airway resistance in children. Rhinology 19(3):149–154

    CAS  PubMed  Google Scholar 

  19. Laine-Alava MT, Murtolahti S, Crouse UK, Warren DW (2018) Guideline values for minimum nasal cross-sectional area in children. Cleft Palate Craniofac J 55(8):1043–1050. https://doi.org/10.1177/1055665618767107 (Epub 2018 Mar 28)

    Article  PubMed  Google Scholar 

  20. Sin S, Wootton DM, McDonough JM, Nandalike K, Arens R (2014) Anterior nasal resistance in obese children with obstructive sleep apnea syndrome. Laryngoscope 124(11):2640–2644. https://doi.org/10.1002/lary.24653 (Epub 2014 Jul 7)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Brockmann PE, Schaefer C, Poets A, Poets CF, Urschitz MS (2013) Diagnosis of obstructive sleep apnea in children: a systematic review. Sleep Med Rev 17(5):331–340. https://doi.org/10.1016/j.smrv.2012.08.004 (Epub 2013 Jan 30)

    Article  PubMed  Google Scholar 

  22. Bock JM, Schien M, Fischer C, Naehrlich L, Kaeding M, Guntinas-Lichius O, Gerber A, Arnold C, Mainz JG (2017) Importance to question sinonasal symptoms and to perform rhinoscopy and rhinomanometry in cystic fibrosis patients. Pediatr Pulmonol 52(2):167–174. https://doi.org/10.1002/ppul.23613 (Epub 2016 Nov 28)

    Article  CAS  PubMed  Google Scholar 

  23. Sojak J, Durdik P, Pecova R (2018) The effect of adenoidectomy on Transnasal airflow in children with hypertrophy of adenoid tissue. Afr J Paediatr Surg AJPS 15(3):126–130

    Article  Google Scholar 

  24. Rybnikar T, Senkerik M, Chladek J, Chladkova J, Kalfert D, Skoloudik L (2018) Adenoid hypertrophy affects screening for primary ciliary dyskinesia using nasal nitric oxide. Int J Pediatr Otorhinolaryngol 115:6–9

    Article  Google Scholar 

  25. Torretta S, Marchisio P, Esposito S, Cappadona M, Fattizzo M, Pignataro L (2011) Diagnostic accuracy of nasal obstruction index in detecting adenoid hypertrophy in children without allergy. Int J Pediatr Otorhinolaryngol 75:57–61

    Article  CAS  Google Scholar 

  26. Calvo-Henriquez C, Branco AM, Lechien JR, Maria-Saibene A, DeMarchi MV, Valencia-Blanco B, Boronat-Catalá B, Rangel-Chávez J, Martin- Martin C (2021) What is the relationship between the size of the adenoids and nasal obstruction? A systematic review. Intern J Ped Otorhinolaryngol. https://doi.org/10.1016/j.ijporl.2021.110895

    Article  Google Scholar 

  27. Calvo-Henriquez C, Mayo-Yáñez M, Lechien JR, Moure JD, Faraldo-García A, Martinez-Capoccioni G, Esteller-More E, Neves JC, Martin-Martin C (2021) Looking for a cutoff value for the decongestant test in children suffering with turbinate hypertrophy. Eur Arch Otorhinolaryngol. https://doi.org/10.1007/s00405-021-06657-0

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ginis T, Bostanci I, Ozmen S, Misirlioglu ED, Dogru M, Duman H (2015) Subjective and objective assessments of seasonal effect in children with seasonal allergic rhinitis. Int J Pediatr Otorhinolaryngol 79(3):405–410. https://doi.org/10.1016/j.ijporl.2014.12.038 (Epub 2015 Jan 7)

    Article  PubMed  Google Scholar 

  29. Harmanci K, Urhan B, Anil H, Kocak A (2015) Nasal and bronchial response to exercise in children with seasonal allergic rhinitis out of the pollen season. Int Forum Allergy Rhinol 5:143–148

    Article  Google Scholar 

  30. Eliseeva TI, Krasilnikova SV, Babaev SY, Novozhilov AA, Ovsyannikov DY, Ignatov SK, Kubysheva NI, Shakhov AV (2018) Dependence of anterior active rhinomanometry indices on nasal obstructive disorders in children with atopic bronchial asthma complicated by nasal symptoms. Biomed Res Int 2018:1869613. https://doi.org/10.1155/2018/1869613

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wandalsen GF, Mendes AI, Solé D (2012) Correlation between nasal resistance and different acoustic rhinometry parameters in children and adolescents with and without allergic rhinitis. Braz J Otorhinolaryngol 78(6):81–86

    Article  Google Scholar 

  32. Ottaviano G, Maculan P, Borghetto G, Favero V, Galletti B, Savietto E, Scarpa B, Martini E, De Filippis C, Favero L (2018) Nasal function before and after rapid maxillary expansion in children: a randomized, prospective, controlled study. Int J Pediatr Otorhinolaryngol 115:133–138

    Article  CAS  Google Scholar 

  33. Priftis KN, Papadimitriou N, Anthracopoulos MB (2012) Should we perform objective assess-ment of nasal obstruction in children with chronic rhinitis? J Pediatr 88:374–376

    Article  Google Scholar 

  34. van Cauwenberge PB, de Schynkel K, Kluyskens PM (1984) Clinical use of rhinomanometry in children. Int J Pediatr Otorhinolaryngol 8(2):163–175. https://doi.org/10.1016/s0165-5876(84)80065-8

    Article  PubMed  Google Scholar 

  35. Chen IC, Lin Y-T, Hsu J-H, Liu Y-C, Wu J-R, Dai Z-K (2016) Nasal airflow measured by rhinomanometry correlates with FeNO in children with asthma. PLoS ONE 11(10):e0165440. https://doi.org/10.1371/journal.pone.0165440.eCollection2016

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mittenzwey H, Wüstenberg EG, Leupold W (2007) Optical rhinometry: application on children and adolescents for nasal provocation tests. Pediatr Allergy Immunol 18(5):372–377. https://doi.org/10.1111/j.1399-3038.2007.00530.x

    Article  PubMed  Google Scholar 

  37. Wandalsen GF, Mendes AI, Matsumoto F, Solé D (2016) Acoustic rhinometry in nasal provocation tests in children and adolescents. J Investig Allergol Clin Immunol 26(3):156–160. https://doi.org/10.18176/jiaci.0036

    Article  CAS  PubMed  Google Scholar 

  38. Anantasit N, Vilaiyuk S, Kamchaisatian W, Supakornthanasam W, Sasisakulporn C, Teawsomboonkit W, Benjaponpitak S (2013) Comparison of conjunctival and nasal provocation tests in allergic rhinitis children with Dermatophagoides pteronyssinus sensitization. Asian Pac J Allergy Immunol 31:227–232

    Article  Google Scholar 

  39. van der Heijden P, Hobbel HHF, van der Laan BFAM, Korsten-Meijer AGW, Goorhuis Brouwer SM (2011) Nasometry cooperation in children 4–6 years of age. Int J Pediatr Otorhinolaryngol 75(5):627–630. https://doi.org/10.1016/j.ijporl.2011.01.035 (Epub 2011 Feb 22)

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans J. Welkoborsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welkoborsky, H.J., Rose-Diekmann, C., vor der Holte, A.P. et al. Clinical parameters influencing the results of anterior rhinomanometry in children. Eur Arch Otorhinolaryngol 279, 3963–3972 (2022). https://doi.org/10.1007/s00405-021-07218-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-021-07218-1

Keywords

Navigation