Skip to main content

Advertisement

Log in

3D printing for clinical application in otorhinolaryngology

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Three-dimensional (3D) printing is a promising technology that can use a patient’s image data to create complex and personalized constructs precisely. It has made great progress over the past few decades and has been widely used in medicine including medical modeling, surgical planning, medical education and training, prosthesis and implants. Three-dimensional (3D) bioprinting is a powerful tool that has the potential to fabricate bioengineered constructs of the desired shape layer-by-layer using computer-aided deposition of living cells and biomaterials. Advances in 3D printed implants and future tissue-engineered constructs will bring great progress to the field of otolaryngology. By integrating 3D printing into tissue engineering and materials, it may be possible for otolaryngologists to implant 3D printed functional grafts into patients for reconstruction of a variety of tissue defects in the foreseeable future. In this review, we will introduce the current state of 3D printing technology and highlight the applications of 3D printed prosthesis and implants, 3D printing technology combined with tissue engineering and future directions of bioprinting in the field of otolaryngology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hull CW iU, Inc, assignee (1986) Apparatus for production of three-dimensional objects by stereolithography. US Patent 4,575,330 11

  2. Zadpoor AA, Malda J (2017) Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 45(1):1–11. doi:10.1007/s10439-016-1719-y

    Article  PubMed  Google Scholar 

  3. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU, Giesel FL (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341. doi:10.1007/s11548-010-0476-x

    Article  CAS  PubMed  Google Scholar 

  4. Schubert C, van Langeveld MC, Donoso LA (2014) Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol 98(2):159–161. doi:10.1136/bjophthalmol-2013-304446

    Article  PubMed  Google Scholar 

  5. Marro A, Bandukwala T, Mak W (2016) Three-dimensional printing and medical imaging: a review of the methods and applications. Curr Probl Diagn Radiol 45(1):2–9. doi:10.1067/j.cpradiol.2015.07.009

    Article  PubMed  Google Scholar 

  6. Bartellas M, Ryan S, Doucet G, Murphy D, Turner J (2017) Three-dimensional printing of a hemorrhagic cervical cancer model for postgraduate gynecological training. Cureus 9(1):e950. doi:10.7759/cureus.950

    PubMed  PubMed Central  Google Scholar 

  7. Madurska MJ, Poyade M, Eason D, Rea P, Watson AJ (2017) Development of a patient-specific 3D-printed liver model for preoperative planning. Surg Innov 24(2):145–150. doi:10.1177/1553350616689414

    Article  PubMed  Google Scholar 

  8. Marconi S, Pugliese L, Botti M, Peri A, Cavazzi E, Latteri S, Auricchio F, Pietrabissa A (2017) Value of 3D printing for the comprehension of surgical anatomy. Surg Endosc. doi:10.1007/s00464-017-5457-5

    PubMed  Google Scholar 

  9. Zuniga JM, Carson AM, Peck JM, Kalina T, Srivastava RM, Peck K (2017) The development of a low-cost three-dimensional printed shoulder, arm, and hand prostheses for children. Prosthet Orthot Int 41(2):205–209. doi:10.1177/030936461664

    Article  PubMed  Google Scholar 

  10. Callahan AB, Campbell AA, Petris C, Kazim M (2017) Low-cost 3D printing orbital implant templates in secondary orbital reconstructions. Ophthalmic Plast Reconstr Surg. doi:10.1097/IOP.0000000000000884

    Google Scholar 

  11. Cohen J, Reyes SA (2015) Creation of a 3D printed temporal bone model from clinical CT data. Am J Otolaryngol 36(5):619–624. doi:10.1016/j.amjoto.2015.02.012

    Article  PubMed  Google Scholar 

  12. Nuseir A, Hatamleh M, Watson J, Al-Wahadni AM, Alzoubi F, Murad M (2015) Improved construction of auricular prosthesis by digital technologies. J Craniofac Surg 26(6):e502–505. doi:10.1097/SCS.0000000000002012

    Article  PubMed  Google Scholar 

  13. Kozin ED, Remenschneider AK, Cheng S, Nakajima HH, Lee DJ (2015) Three-dimensional printed prosthesis for repair of superior canal dehiscence. Otolaryngol Head Neck Surg 153(4):616–619. doi:10.1177/0194599815592602

    Article  PubMed  Google Scholar 

  14. Owusu JA, Boahene K (2015) Update of patient-specific maxillofacial implant. Curr Opin Otolaryngol Head Neck Surg 23(4):261–264. doi:10.1097/MOO.0000000000000175

    Article  PubMed  Google Scholar 

  15. AlReefi MA, Nguyen LH, Mongeau LG, Haq BU, Boyanapalli S, Hafeez N, Cegarra-Escolano F, Tewfik MA (2016) Development and validation of a septoplasty training model using 3-dimensional printing technology. Int Forum Allergy Rhinol. doi:10.1002/alr.21887

    PubMed  Google Scholar 

  16. Chan HH, Siewerdsen JH, Vescan A, Daly MJ, Prisman E, Irish JC (2015) 3D rapid prototyping for otolaryngology-head and neck surgery: applications in image-guidance, surgical simulation and patient-specific modeling. PLoS One 10(9):e0136370. doi:10.1371/journal.pone.0136370

    Article  PubMed  PubMed Central  Google Scholar 

  17. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ, Groll J, Hutmacher DW (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028. doi:10.1002/adma.201302042

    Article  CAS  PubMed  Google Scholar 

  18. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. doi:10.1038/nbt.2958

    Article  CAS  PubMed  Google Scholar 

  19. Gu BK, Choi DJ, Park SJ, Kim MS, Kang CM, Kim CH (2016) 3-dimensional bioprinting for tissue engineering applications. Biomater Res 20:12. doi:10.1186/s40824-016-0058-2

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33(7):395–400. doi:10.1016/j.tibtech.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  21. Ozbolat IT, Peng W, Ozbolat V (2016) Application areas of 3D bioprinting. Drug Discov Today 21(8):1257–1271. doi:10.1016/j.drudis.2016.04.006

    Article  CAS  PubMed  Google Scholar 

  22. Knowlton S, Onal S, Yu CH, Zhao JJ, Tasoglu S (2015) Bioprinting for cancer research. Trends Biotechnol 33(9):504–513. doi:10.1016/j.tibtech.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  23. Snyder JE, Hamid Q, Wang C, Chang R, Emami K, Wu H, Sun W (2011) Bioprinting cell-laden matrigel for radioprotection study of liver by pro-drug conversion in a dual-tissue microfluidic chip. Biofabrication 3(3):034112. doi:10.1088/1758-5082/3/3/034112

    Article  CAS  PubMed  Google Scholar 

  24. Vorwerk U, Begall K (1998) Practice surgery on the artificial temporal bone. Development of temporal bone facsimiles with stereolithography. HNO 46(3):246–251

    Article  CAS  PubMed  Google Scholar 

  25. Suzuki M, Ogawa Y, Kawano A, Hagiwara A, Yamaguchi H, Ono H (2004) Rapid prototyping of temporal bone for surgical training and medical education. Acta Otolaryngol 124(4):400–402

    Article  PubMed  Google Scholar 

  26. Monfared A, Mitteramskogler G, Gruber S, Salisbury JK Jr, Stampfl J, Blevins NH (2012) High-fidelity, inexpensive surgical middle ear simulator. Oto Neurotol 33(9):1573–1577. doi:10.1097/MAO.0b013e31826dbca5

    Article  Google Scholar 

  27. Wulf J, Rohde L, Koppe T, Winder RJ (2012) Three-dimensional micro-imaging (μCT) based physical anatomic teaching models: implementation of a new learning aid for routine use in anatomy lectures. Stud Health Technol Inf 173:549–551

    Google Scholar 

  28. Rose AS, Kimbell JS, Webster CE, Harrysson OL, Formeister EJ, Buchman CA (2015) Multi-material 3D models for temporal bone surgical simulation. Ann Otol Rhinol Laryngol 124(7):528–536. doi:10.1177/0003489415570937

    Article  PubMed  Google Scholar 

  29. Longfield EA, Brickman TM, Jeyakumar A (2015) 3D printed pediatric temporal bone: a novel training model. Otol Neurotol 36(5):793–795. doi:10.1097/MAO.0000000000000750

    Article  PubMed  Google Scholar 

  30. Da Cruz MJ, Francis HW (2015) Face and content validation of a novel three-dimensional printed temporal bone for surgical skills development. J Laryngol Otol 129(Suppl 3):S23–S29. doi:10.1017/S0022215115001346

    Article  PubMed  Google Scholar 

  31. Hochman JB, Rhodes C, Wong D, Kraut J, Pisa J, Unger B (2015) Comparison of cadaveric and isomorphic three-dimensional printed models in temporal bone education. Laryngoscope 125(10):2353–2357. doi:10.1002/lary.24919

    Article  PubMed  Google Scholar 

  32. Mowry SE, Jammal H, Myer C 4th, Solares CA, Weinberger P (2015) A novel temporal bone simulation model using 3D printing techniques. Otol Neurotol 36(9):1562–1565. doi:10.1097/MAO.0000000000000848

    Article  PubMed  Google Scholar 

  33. Kuru L, Maier H, Müller M, Lenarz T, Lueth TC (2016) A 3D-printed functional anatomical human middle ear model. Hear Res 340:204–213. doi:10.1016/j.heares.2015.12.025

    Article  PubMed  Google Scholar 

  34. Wanibuchi M, Noshiro S, Sugino T, Akiyama Y, Mikami T, Iihoshi S, Miyata K, Komatsu K, Mikuni N (2016) Training for skull base surgery with a colored temporal bone model created by three-dimensional printing technology. World Neurosurg 91:66–72. doi:10.1016/j.wneu.2016.03.084

    Article  PubMed  Google Scholar 

  35. Berens AM, Newman S, Bhrany AD, Murakami C, Sie KC, Zopf DA (2016) Computer-aided design and 3D printing to produce a costal cartilage model for simulation of auricular reconstruction. Otolaryngol Head Neck Surg 155(2):356–359. doi:10.1177/0194599816639586

    Article  PubMed  Google Scholar 

  36. Alrasheed AS, Nguyen LHP, Mongeau L, Funnell WRJ, Tewfik MA (2017) Development and validation of a 3D-printed model of the ostiomeatal complex and frontal sinus for endoscopic sinus surgery training. Int Forum Allergy Rhinol 7(8):837–841. doi:10.1002/alr.21960

    Article  PubMed  Google Scholar 

  37. Chang DR, Lin RP, Bowe S, Bunegin L, Weitzel EK, McMains KC, Willson T, Chen PG (2017) Fabircation and validation of a low-cost, medium-fidelity silicone injection molded endoscopic sinus surgery simulation model. Laryngoscope 127(4):781–786. doi:10.1002/lary.26370

    Article  PubMed  Google Scholar 

  38. Tai BL, Wang AC, Joseph JR, Wang PI, Sullivan SE, McKean EL, Shih AJ, Rooney DM (2016) A physical simulator for endoscopic endonasal drilling techniques: technical note. J Neurosurg 124(3):811–816. doi:10.3171/2015.3.JNS1552

    Article  PubMed  Google Scholar 

  39. Sander IM, Liepert TT, Doney EL, Leevy WM, Liepert DR (2017) Patient education for endoscopic sinus surgery: preliminary experience using 3D-printed clinical imaging data. J Funct Biomater 8(2):E13. doi:10.3390/jfb8020013

    Article  PubMed  Google Scholar 

  40. Chiesa Estomba CM, González Fernández I, Iglesias Otero MÁ (2016) How we do it: anterior and posterior nosebleed trainer, the 3D printing epistaxis project. Clin Otolaryngol. doi:10.1111/coa.12711

    PubMed  Google Scholar 

  41. Danti S, D’Alessandro D, Pietrabissa A, Petrini M, Berrettini S (2009) Development of tissue-engineered substitutes of the ear ossicles: PORP-shaped poly(propylene fumarate)-based scaffolds cultured with human mesenchymal stromal cells. J Biomed Mater Res A 92(4):1343–1356. doi:10.1002/jbm.a.32447

    Google Scholar 

  42. Martin AD, Harner SG (2004) Ossicular reconstruction with titanium prosthesis. Laryngoscope 114(1):61–64

    Article  CAS  PubMed  Google Scholar 

  43. Baker AB, O’Connell BP, Nguyen SA, Lambert PR (2015) Ossiculoplasty with titanium prostheses in patients with intact stapes: comparison of TORP versus PORP. Otol Neurotol 36(10):1676–1682. doi:10.1097/MAO.0000000000000893

    Article  PubMed  Google Scholar 

  44. Goldenberg RA, Driver M (2000) Long-term results with hydroxylapatite middle ear implants. Otolaryngol Head Neck Surg 122(5):635–642

    CAS  PubMed  Google Scholar 

  45. Xiong Y, Chen P, Sun J (2012) Studies on personalized porous titanium implant fabricated using three-dimensional printing forming technique. J Biomed Eng 29(2):247–250 (article in Chinese)

    CAS  Google Scholar 

  46. Li XS, Sun JJ, Jiang W, Liu X (2009) Effect on cochlea function by tissue-engineering osside prosthets containing controlled release bone morphogenetic protein 2 transplanted into acoustic build in guinea pig. Chin J Otorhinolaryngol Head Neck Surg 44(6):490–493 (article in Chinese)

    Google Scholar 

  47. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P (2008) Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle-and bone-like subpopulations. Stem Cells 26(1):127–134. doi:10.1634/stemcells.2007-0520

    Article  CAS  PubMed  Google Scholar 

  48. Sandström C (2015) Adopting 3D printing for manufacturing-evidence from the hearing aid industry. Technol Forecast Soc Change 102:160–168

    Article  Google Scholar 

  49. Kaye R, Goldstein T, Zeltsman D, Grande DA, Smith LP (2016) Three dimensional printing: a review on the utility within medicine and otolaryngology. Int J Pediatr Otorhinolaryngol 89:145–148. doi:10.1016/j.ijporl.2016.08.007

    Article  PubMed  Google Scholar 

  50. Bos EJ, Scholten T, Song Y, Verlinden JC, Wolff J, Forouzanfar T, Helder MN, van Zuijlen P (2015) Developing a parametric ear model for auricular reconstruction: a new step towards patient-specific implants. J Craniomaxillofac Surg 43(3):390–395. doi:10.1016/j.jcms.2014.12.016

    Article  CAS  PubMed  Google Scholar 

  51. Watson J, Hatamleh MM (2014) Complete integration of technology for improved reproduction of auricular prostheses. J Prosthet Dent 111(5):430–436. doi:10.1016/j.prosdent.2013.07.018

    Article  PubMed  Google Scholar 

  52. Zopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Hollister SJ (2015) Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 152(1):57–62. doi:10.1177/0194599814552065

    Article  PubMed  Google Scholar 

  53. Suaste-Gómez E, Rodríguez-Roldán G, Reyes-Cruz H, Terán-Jiménez O (2016) Developing an ear prosthesis fabricated in polyvinylidene fluoride by a 3D printer with sensory intrinsic properties of pressure and temperature. Sensors 16(3):332. doi:10.3390/s16030332

    Article  PubMed Central  Google Scholar 

  54. Guillemot F, Souquet A, Catros S et al (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6(7):2494–2500. doi:10.1016/j.actbio.2009.09.029

    Article  CAS  PubMed  Google Scholar 

  55. Cui X, Breitenkamp K, Finn MG, Lotz M, D’Lima DD (2012) Direct human cartilage repair using three-dimensional bioprinting technology. Tissue Eng Part A 18(11–12):1304–1312. doi:10.1089/ten.TEA.2011.0543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fedorovich NE, Schuurman W, Wijnberg HM, Prins HJ, van Weeren PR, Malda J, Alblas J, Dhert WJ (2012) Biofabrication of osteochondral tissue equivalents by printing topologically defined, cell-laden hydrogel scaffolds. Tissue Eng Part C Methods 18(1):33–44. doi:10.1089/ten.TEC.2011.0060

    Article  CAS  PubMed  Google Scholar 

  57. Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16(5):1489–1496. doi:10.1021/acs.biomac.5b00188

    Article  CAS  PubMed  Google Scholar 

  58. Park JY, Choi YJ, Shim JH, Park JH, Cho DW (2017) Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction. J Biomed Mater Res B Appl Biomater. doi:10.1002/jbm.b.33639

    Google Scholar 

  59. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW (2014) 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 6(2):024103. doi:10.1088/1758-5082/6/2/024103

    Article  PubMed  Google Scholar 

  60. Mannoor MS, Jiang Z, James T, Kong YL, Malatesta KA, Soboyejo WO, Verma N, Gracias DH, McAlpine MC (2013) 3D printed bionic ears. Nano Lett 13(6):2634–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Monasta L, Ronfani L, Marchetti F, Montico M, Vecchi Brumatti L, Bavcar A, Grasso D, Barbiero C, Tamburlini G (2012) Burden of disease caused by otitis media: systematic review and global estimates. PLoS One 7(4):e36226. doi:10.1371/journal.pone.0036226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boedts D, De Cock M, Andries L, Marquet J (1990) A scanning electron-microscopic study of different tympanic grafts. Am J Otol 11(4):274–277

    Article  CAS  PubMed  Google Scholar 

  63. Kozin ED, Black NL, Cheng JT, Cotler MJ, McKenna MJ, Lee DJ, Lewis JA, Rosowski JJ, Remenschneider AK (2016) Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res 340:191–203. doi:10.1016/j.heares.2016.03.005

    Article  PubMed  Google Scholar 

  64. Kuo CY, Wilson E, Fuson A, Gandhi N, Monfaredi R, Jenkins A, Romero M, Santoro M, Fisher JP, Cleary K, Reilly B (2017) Repair of tympanic membrane perforations with customized, bioprinted ear grafts using chinchilla models. Tissue Eng Part A. doi:10.1089/ten.TEA.2017.0246

    Google Scholar 

  65. Onerci Altunay Z, Bly JA, Edwards PK, Holmes DR, Hamilton GS, O’Brien EK, Carr AB, Camp JJ, Stokken JK, Pallanch JF (2016) Three dimensional printing of large nasal septal perforations for optimal prosthetic closure. Am J Rhinol Allergy 30(4):287–293. doi:10.2500/ajra.2016.30.4324

    Article  PubMed  Google Scholar 

  66. Stokken JK, Pallanch JF (2017) The emerging role of 3-dimensional printing in rhinology. Otolaryngol Clin N Am 50(3):583–588. doi:10.1016/j.otc.2017.01.014

    Article  Google Scholar 

  67. Choi YD, Kim Y, Park E (2017) Patient-specific augmentation rhinoplasty using a three-dimensional simulation program and three-dimensional printing. Aesthet Surg J. doi:10.1093/asj/sjx046

    PubMed  Google Scholar 

  68. Kim YS, Shin YS, Park DY, Choi JW, Park JK, Kim DH, Kim CH, Park SA (2015) The application of three-dimensional printing in animal model of augmentation rhinoplasty. Ann Biomed Eng 43(9):2153–2162. doi:10.1007/s10439-015-1261-3

    Article  PubMed  Google Scholar 

  69. Park SH, Yun BG, Won JY et al (2017) New application of three-dimensional printing biomaterial in nasal reconstruction. Laryngoscope 127(5):1036–1043. doi:10.1002/lary.26400

    Article  CAS  PubMed  Google Scholar 

  70. Goyal V, Masters IB, Chang AB (2005) Interventions for primary (intrinsic) tracheomalacia in children. Cochrane Database Syst Rev 10:CD005304. doi:10.1002/14651858.CD005304.pub3

    Google Scholar 

  71. Zopf DA, Hollister SJ, Nelson ME, Ohye RG, Green GE (2013) Bioresorbable airway splint created with a three-dimensional printer. N Engl J Med 368(21):2043–2045. doi:10.1056/NEJMc1206319

    Article  CAS  PubMed  Google Scholar 

  72. Kuehn BM (2016) Clinicians embrace 3D printers to solve unique clinical challenges. JAMA 315(4):333–335. doi:10.1001/jama.2015.17705

    Article  CAS  PubMed  Google Scholar 

  73. Kaye R, Goldstein T, Aronowitz D, Grande DA, Zeltsman D, Smith LP (2017) Ex vivo tracheomalacia model with 3D-printed external tracheal splint. Laryngoscope 127(4):950–955. doi:10.1002/lary.26213

    Article  PubMed  Google Scholar 

  74. Huang L, Wang L, He J, Zhao J, Zhong D, Yang G, Guo T, Yan X, Zhang L, Li D, Cao T, Li X (2016) Tracheal suspension by using 3-dimensional printed personalized scaffold in a patient with tracheomalacia. J Thorac Dis 8(11):3323–3328. doi:10.21037/jtd.2016.10.53

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guibert N, Moreno B, Hermant C (2017) Usefulness of 3D printing to manage complex tracheal stenosis. J Bronchology Interv Pulmonol 24(2):e27–e29. doi:10.1097/LBR.0000000000000380

    Article  PubMed  Google Scholar 

  76. Law JX, Liau LL, Aminuddin BS, Ruszymah BH (2016) Tissue-engineered trachea: a review. Int J Pediatr Otorhinolaryngol 91:55–63. doi:10.1016/j.ijporl.2016.10.012

    Article  PubMed  Google Scholar 

  77. Grillo HC (2002) Tracheal replacement: a critical review. Ann Thorac Surg 73(6):1995–2004

    Article  PubMed  Google Scholar 

  78. Den Hondt M, Vranckx JJ (2017) Reconstruction of defects of the trachea. J Mater Sci Mater Med 28(2):24. doi:10.1007/s10856-016-5835-x

    Article  Google Scholar 

  79. Delaere P, Vranckx J, Verleden G, De Leyn P, Van Raemdonck D, Leuven Tracheal Transplant Group (2010) Tracheal allotransplantation after withdrawal of immunosuppressive therapy. N Engl J Med 362(2):138–145. doi:10.1056/NEJMoa0810653

    Article  CAS  PubMed  Google Scholar 

  80. Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP, Nussdorfer GG (2005) Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int 18(6):727–734

    Article  CAS  PubMed  Google Scholar 

  81. Badylak SF, Freytes DO, Gilbert TW (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater 5(1):1–13. doi:10.1016/j.actbio.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  82. Macchiarini P, Jungebluth P, Go T et al (2008) Clinical transplantation of a tissue-engineered airway. Lancet 372(9655):2023–2030. doi:10.1016/S01406736(08)61598-6

    Article  PubMed  Google Scholar 

  83. Gonfiotti A, Jaus MO, Barale D et al (2014) The first tissue-engineered airway transplantation: 5-year follow-up results. Lancet 383(9913):238–244. doi:10.1016/s0140-6736(13)62033-4

    Article  PubMed  Google Scholar 

  84. Ott LM, Zabel TA, Walker NK, Farris AL, Chakroff JT, Ohst DG, Johnson JK, Gehrke SH, Weatherly RA, Detamore MS (2016) Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair. Biomed Mater 11(2):025020. doi:10.1088/1748-6041/11/2/025020

    Article  PubMed  Google Scholar 

  85. Stannard W, O’Callaghan C (2006) Ciliary function and the role of cilia in clearance. J Aerosol Med 19(1):110–115

    Article  CAS  PubMed  Google Scholar 

  86. Chang JW, Park SA, Park JK, Choi JW, Kim YS, Shin YS, Kim CH (2014) Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif Organs 38(6):E95–E105. doi:10.1111/aor.12310

    Article  CAS  PubMed  Google Scholar 

  87. Park JH, Park JY, Nam IC, Hwang SH, Kim CS, Jung JW, Jang J, Lee H, Choi Y, Park SH, Kim SW, Cho DW (2015) Human turbinate mesenchymal stromal cell sheets with bellows graft for rapid tracheal epithelial regeneration. Acta Biomater 25:56–64. doi:10.1016/j.actbio.2015.07.014

    Article  CAS  PubMed  Google Scholar 

  88. Park JH, Hong JM, Ju YM, Jung JW, Kang HW, Lee SJ, Yoo JJ, Kim SW, Kim SH, Cho DW (2015) A novel tissue-engineered trachea with a mechanical behavior similar to native trachea. Biomaterials 62:106–115. doi:10.1016/j.biomaterials.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  89. Goldstein TA, Smith BD, Zeltsman D, Grande D, Smith LP (2015) Introducing a 3-dimensionally printed, tissue-engineered graft for airway reconstruction: a pilot study. Otolaryngol Head Neck Surg 153(6):1001–1006. doi:10.1177/0194599815605492

    Article  PubMed  Google Scholar 

  90. Rehmani SS, Al-Ayoubi AM, Ayub A, Barsky M, Lewis E, Flores R, Lebovics R, Bhora FY (2017) Three-dimensional-printed bioengineered tracheal grafts: preclinical results and potential for human use. Ann Thorac Surg. doi:10.1016/j.athoracsur.2017.03.051

  91. Gao M, Zhang H, Dong W et al (2017) Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair. Sci Rep 7(1):5246. doi:10.1038/s41598-017-05518-3

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kontio R (2014) Update on mandibular reconstruction: computer-aided design, imaging, stem cells and future applications. Curr Opin Otolaryngol Head Neck Surg 22(4):307–315. doi:10.1097/MOO.0000000000000065

    Article  PubMed  Google Scholar 

  93. Lee M, DeConde A, Aghaloo T, Lee M, Tetradis S, St. John M (2013) Biomimetic scaffolds loaded with adipose-derived stem cells and BMP-2 induce healing of mandibular defects. Otolaryngol Head and Neck Surg 149(2 Suppl):35–36

    Article  Google Scholar 

  94. (2015) The world’s first AM mandible implant. http://www.layerwisecom/the-worldsfirst-patient-specific-am-lower-jaw/. Accessed 22 Feb 2015

  95. Griffith H (2015) Pioneering 3D printing reshapes patient’s face in Wales. http://www.bbccom/news/uk-wales-26534408. Accessed 22 Feb 2015

  96. Rachmiel A, Shilo D, Blanc O, Emodi O (2017) Reconstruction of complex mandibular defects using integrated dental custom-made titanium implants. Br J Oral Maxillofac Surg 55(4):425–427. doi:10.1016/j.bjoms.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  97. Qassemyar Q, Assouly N, Temam S, Kolb F (2017) Use of a three-dimensional custom-made porous titanium prosthesis for mandibular body reconstruction. Int J Oral Maxillofac Surg. doi:10.1016/j.ijom.2017.06.001

    PubMed  Google Scholar 

  98. Lu YCF, Zhao X, Shao ZZ, Cao ZB (2006) Experimental study on facial nerve regeneration by porous silk fibroin conduit. Chin J Otorhinolaryngol Head Neck Surg 41(8):603–606 (article in Chinese)

    Google Scholar 

  99. Ma F, Zhu T, Xu F, Wang Z, Zheng Y, Tang Q, Chen L, Shen Y, Zhu J (2017) Neural stem/progenitor cells on collagen with anchored basic fibroblast growth factor as potential natural nerve conduits for facial nerve regeneration. Acta Biomater 50:188–197. doi:10.1016/j.actbio.2016.11.064

    Article  CAS  PubMed  Google Scholar 

  100. Liu H, Wen W, Hu M, Bi W, Chen L, Liu S, Chen P, Tan X (2013) Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects. Neural Regener Res 8(33):3139–3147. doi:10.3969/j.issn.1673-5374.2013.33.008

    CAS  Google Scholar 

  101. Owens CM, Marga F, Forgacs G, Heesch CM (2013) Biofabrication and testing of a fully cellular nerve graft. Biofabrication 5(4):045007. doi:10.1088/1758-5082/5/4/045007

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98(1):160–170. doi:10.1002/jbm.b.31831

    Article  PubMed  PubMed Central  Google Scholar 

  103. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60(3):691–699. doi:10.1109/TBME.2013.2243

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science of China (81271094) and the Shanghai Science and Technology Committee (17441901600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Zhao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This article does not involve any studies with human participants or animals performed by any of the authors and therefore no informed consent was required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, N., Zhao, X. 3D printing for clinical application in otorhinolaryngology. Eur Arch Otorhinolaryngol 274, 4079–4089 (2017). https://doi.org/10.1007/s00405-017-4743-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-017-4743-0

Keywords

Navigation