Skip to main content
Log in

Nanomedicine in otorhinolaryngology: what does the future hold?

  • Review Article
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

Nanotechnology and nanomedicine are new and rapidly developing areas which are concerned with the utilisation of structures and devices, one billionth of a metre in scale and how their special properties may be utilised in the diagnosis and treatment of diseases. In otorhinolaryngology, there have been some inroads into utilising these new treatment modalities and there is future prospect for significant developments. Their impact may be to revolutionise the current practice of otorhinolaryngology. This review considers current developments and future prospects for nanotechnology in our specialty and considers the pitfalls that may be encountered. The online medical reference databases PubMed, Google Scholar, ISI Web of Science and Science Direct were searched with search terms “Nanotechnology, Nanomedicine” in combination with “Otolaryngology, ENT, Rhinology, Otology, Head and Neck Surgery, Laryngology” in turn. A number of developments are already showing promise in animal models, particularly for nanoparticle delivery of drugs, which may avoid some of the inherent systemic side effects seen with conventional application. Other possibilities include nanoscale reconstruction and regeneration of tissues and even unexpected spin-off technologies such as haemostatic agents. The future treatment of otorhinolaryngological diseases could be revolutionised by advances in nanomedicine and nanotechnology and diseases, such as olfactory disorders may become radically more amenable to medical treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aeppli G, Pankhurst Q (2006) Launch of the London Centre for Nanotechnology. Nanomedicine (London, England) 1(4):393–398

    Article  Google Scholar 

  2. Horton MA, Khan A (2006) Medical nanotechnology in the UK: a perspective from the London Centre for Nanotechnology. Nanomedicine 2(1):42–48

    PubMed  CAS  Google Scholar 

  3. Ratner M, Ratner D (2002) Nanotechnology: a gentle introduction to the next big idea. Prentice Hall, Upper Saddle River

    Google Scholar 

  4. Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C (2005) Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine 1(2):150–158

    PubMed  CAS  Google Scholar 

  5. Sataloff RT, Wei C (2007) Nanomedicine: important new concepts for otolaryngology. Ear Nose Throat J 86(9):528–531

    PubMed  Google Scholar 

  6. Wei C, Liu N, Xu P, Heller M, Tomalia DA, Haynie DT, Chang EH, Wang K, Lee YS, Lyubchenko YL, Bawa R, Tian R, Hanes J, Pun S, Meiners JC, Guo P (2007) From bench to bedside: successful translational nanomedicine: highlights of the Third Annual Meeting of the American Academy of Nanomedicine. Nanomedicine (London, England) 3(4):322–331

    CAS  Google Scholar 

  7. Balogh L (2009) The future of nanomedicine and the future of nanomedicine: NBM. Nanomedicine (London, England) 5:1

    CAS  Google Scholar 

  8. Ferrari M (2008) The mathematical engines of nanomedicine. Small 4(1):20–25

    Article  PubMed  CAS  Google Scholar 

  9. Morrow KJ Jr, Bawa R, Wei C (2007) Recent advances in basic and clinical nanomedicine. Med Clin North Am 91(5):805–843

    Article  PubMed  CAS  Google Scholar 

  10. Bawa R, Bawa SR, Maebius SB, Flynn T, Wei C (2005) Protecting new ideas and inventions in nanomedicine with patents. Nanomedicine (London, England) 1(2):150–158

    CAS  Google Scholar 

  11. Kostarelos K (2006) The emergence of nanomedicine: a field in the making. Nanomedicine (London, England) 1(1):1–3

    Article  Google Scholar 

  12. Feynman RP (1959) Plenty of room at the bottom [updated 1959; cited 2009 03/10/09]. Available from http://www.its.caltech.edu/~feynman/plenty.html

  13. Regis E (1995) Nano! Nano! Ed Little, Bantam

  14. Guo J, Su H, Zeng Y, Liang YX, Wong WM, Ellis-Behnke RG, So KF, Wu W (2007) Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomedicine (London, England) 3(4):311–321

    CAS  Google Scholar 

  15. Ellis-Behnke RG, Liang YX, Tay DK, Kau PW, Schneider GE, Zhang S, Wu W, So KF (2006) Nano hemostat solution: immediate hemostasis at the nanoscale. Nanomedicine (London, England) 2(4):207–215

    CAS  Google Scholar 

  16. Nahar M, Jain NK (2009) Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 26(12):2588–2598

    Article  PubMed  CAS  Google Scholar 

  17. Nahar M, Mishra D, Dubey V, Jain NK (2008) Development, characterization, and toxicity evaluation of amphotericin B-loaded gelatin nanoparticles. Nanomedicine (London, England) 4(3):252–261

    CAS  Google Scholar 

  18. Ebbens FA, Scadding GK, Badia L, Hellings PW, Jorissen M, Mullol J, Cardesin A, Bachert C, van Zele TP, Dijkgraaf MG, Lund V, Fokkens WJ (2006) Amphotericin B nasal lavages: not a solution for patients with chronic rhinosinusitis. J Allergy Clin Immunol 118(5):1149–1156

    Article  PubMed  CAS  Google Scholar 

  19. Kern EB, Sherris D, Stergiou AM, Katz LM, Rosenblatt LC, Ponikau J (2007) Diagnosis and treatment of chronic rhinosinusitis: focus on intranasal Amphotericin B. Ther Clin Risk Manage 3(2):319–325

    Article  CAS  Google Scholar 

  20. Ponikau JU, Sherris DA, Kita H, Kern EB (2002) Intranasal antifungal treatment in 51 patients with chronic rhinosinusitis. J Allergy Clin Immunol 110(6):862–866

    Article  PubMed  CAS  Google Scholar 

  21. Ponikau JU, Sherris DA, Weaver A, Kita H (2005) Treatment of chronic rhinosinusitis with intranasal amphotericin B: a randomized, placebo-controlled, double-blind pilot trial. J Allergy Clin Immunol 115(1):125–131

    Article  PubMed  CAS  Google Scholar 

  22. Mukherjee S, Ray S, Thakur RS (2009) Design and evaluation of itraconazole loaded solid lipid nanoparticulate system for improving the antifungal therapy. Pak J Pharm Sci 22(2):131–138

    PubMed  CAS  Google Scholar 

  23. Mosqueira VCF, Leite EA, Barros CM, Vilela JMC, Andrade MS (2005) Polymeric nanostructures for drug delivery: characterization by atomic force microscopy. Microsc Microanal 11(Suppl S03):36–39

    Google Scholar 

  24. Madurantakam PA, Cost CP, Simpson DG, Bowlin GL (2009) Science of nanofibrous scaffold fabrication: strategies for next generation tissue-engineering scaffolds. Nanomedicine (London, England) 4(2):193–206

    Article  CAS  Google Scholar 

  25. Birchall MA (2009) Cell- and tissue-engineered organ replacements. Br J Surg 96(6):565–566

    Article  PubMed  CAS  Google Scholar 

  26. Smith IO, Liu XH, Smith LA, Ma PX (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdisciplinary Rev 1(2):226–236

    CAS  Google Scholar 

  27. Falcone D, Li J, Kale A, Jones GB (2008) Photoactivated enediynes as targeted antitumoral agents: efficient routes to antibody and gold nanoparticle conjugates. Bioorg Med Chem Lett 18(3):934–937

    Article  PubMed  CAS  Google Scholar 

  28. Ben-Ze’ev A (1985) The cytoskeleton in cancer cells. Biochim Biophys Acta 780:197–212

    PubMed  Google Scholar 

  29. Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson HM, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C (2005) Optical deformability as an inherent cell marker for testing malignant transformation and metastatic competence. Biophys J 88(5):3689–3698

    Article  PubMed  CAS  Google Scholar 

  30. Remmerbach TW, Wottawah F, Dietrich J, Lincoln B, Wittekind C, Guck J (2009) Oral cancer diagnosis by mechanical phenotyping. Cancer Res 69(5):1728–1732

    Article  PubMed  CAS  Google Scholar 

  31. Cheper V, Wolf M, Scholl M, Kadlecova Z, Perrier T, Klok HA, Saulnier P, Lenarz T, Stover T (2009) Potential novel drug carriers for inner ear treatment: hyperbranched polylysine and lipid nanocapsules. Nanomedicine (London, England) 4(6):623–635

    Article  Google Scholar 

  32. Moglia A, Pietrabissa A, Cuschieri A (2009) Capsule endoscopy. Br Med J 339:b3420

    Article  Google Scholar 

  33. Prasad S, Cody V, Saucier-Sawyer JK, Saltzman WM, Sasaki CT, Edelson RL, Birchall MA, Hanlon DJ (2010) Polymer nanoparticles containing tumor lysates as antigen delivery vehicles for dendritic cell-based antitumor immunotherapy. Nanomedicine [Epub ahead of print]

  34. Warenius HM, Seabra L, Kyritsi L, White R, Dormer R, Anandappa S, Thomas C, Howarth A (2008) Theranostic proteomic profiling of cyclins, cyclin dependent kinases and Ras in human cancer cell lines is dependent on p53 mutational status. Int J Oncol 32(4):895–907

    PubMed  CAS  Google Scholar 

  35. Mirkin CA, Thaxton CS, Rosi NL (2004) Nanostructures in biodefense and molecular diagnostics. Expert Rev Mol Diagn 4(6):749–751

    Article  PubMed  Google Scholar 

  36. Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120

    Article  PubMed  CAS  Google Scholar 

  37. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301

    Article  PubMed  CAS  Google Scholar 

  38. McKendry R, Zhang J, Arntz Y, Strunz T, Hegner M, Lang HP, Baller MK, Certa U, Meyer E, Guntherodt HJ, Gerber C (2002) Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc Natl Acad Sci USA 99(15):9783–9788

    Article  PubMed  CAS  Google Scholar 

  39. Shykhon ME, Morgan DW, Dutta R, Hines EL, Gardner JW (2004) Clinical evaluation of the electronic nose in the diagnosis of ear, nose and throat infection: a preliminary study. J Laryngology Otol 118(9):706–709

    CAS  Google Scholar 

  40. Viswaprakash N, Dennis JC, Globa L, Pustovyy O, Josephson EM, Kanju P, Morrison EE, Vodyanoy VJ (2009) Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles. Chem Senses 34(7):547–557

    Article  PubMed  CAS  Google Scholar 

  41. Aiba T, Sugiura M, Mori J, Matsumoto K, Tomiyama K, Okuda F, Nakai Y (1998) Effect of zinc sulfate on sensorineural olfactory disorder. Acta Otolaryngol Suppl 538:202–204

    Article  PubMed  CAS  Google Scholar 

  42. Williams SK, Gilbey T, Barnett SC (2004) Immunohistochemical studies of the cellular changes in the peripheral olfactory system after zinc sulfate nasal irrigation. Neurochem Res 29(5):891–901

    Article  PubMed  CAS  Google Scholar 

  43. Jafek BW, Linschoten MR, Murrow BW (2004) Anosmia after intranasal zinc gluconate use. Am J Rhinol 18(3):137–141

    PubMed  Google Scholar 

  44. Alexander TH, Davidson TM (2006) Intranasal zinc and anosmia: the zinc-induced anosmia syndrome. Laryngoscope 116(2):217–220

    Article  PubMed  CAS  Google Scholar 

  45. FDA (2009) Warnings on three Zicam Intranasal Zinc Products [updated 2009, cited]. Available from http://www.fda.gov/ForConsumers/ConsumerUpdates/ucm166931.htm

  46. Slotnick B, Sanguino A, Husband S, Marquino G, Silberberg A (2007) Olfaction and olfactory epithelium in mice treated with zinc gluconate. Laryngoscope 117(4):743–749

    Article  PubMed  CAS  Google Scholar 

  47. Turin L (1996) A spectroscopic mechanism for primary olfactory reception. Chem Senses 21(6):773–791

    Article  PubMed  CAS  Google Scholar 

  48. Brookes JC, Hartoutsiou F, Horsfield AP, Stoneham AM (2007) Could humans recognize odor by phonon assisted tunneling? Phys Rev Lett 19;98(3):038101

    Google Scholar 

  49. Solomon GS (1994) Anosmia in Alzheimer disease. Percept Mot Skills 79(3 Pt 1):1249–1250

    PubMed  CAS  Google Scholar 

  50. Imamura K, Matumoto S, Mabuchi N, Kobayashi Y, Okayasu N, Watanabe K (2009) [Relationship between the regional cerebral blood flow and the cognitive function and anosmia in patients with Parkinson disease and Alzheimer disease]. Brain Nerve Shinkei kenkyu no shinpo 61(6):683–690

    Google Scholar 

  51. Siderowf A, Newberg A, Chou KL, Lloyd M, Colcher A, Hurtig HI, Stern MB, Doty RL, Mozley PD, Wintering N, Duda JE, Weintraub D, Moberg PJ (2005) [99mTc]TRODAT-1 SPECT imaging correlates with odor identification in early Parkinson disease. Neurology 64(10):1716–1720

    Article  PubMed  CAS  Google Scholar 

  52. Doty RL, Perl DP, Steele JC, Chen KM, Pierce JD, Jr, Reyes P, Kurland LT (1991) Olfactory dysfunction in three neurodegenerative diseases. Geriatrics 46(Suppl 1):47–51

    PubMed  Google Scholar 

  53. Berg D (2006) Marker for a preclinical diagnosis of Parkinson’s disease as a basis for neuroprotection. J Neural Transm 71:123–132

    Article  Google Scholar 

  54. Berg D (2008) Biomarkers for the early detection of Parkinson’s and Alzheimer’s disease. Neurodegenerative Dis 5(3–4):133–136

    Article  Google Scholar 

  55. Keranen T, Kaakkola S, Sotaniemi K, Laulumaa V, Haapaniemi T, Jolma T, Kola H, Ylikoski A, Satomaa O, Kovanen J, Taimela E, Haapaniemi H, Turunen H, Takala A (2003) Economic burden and quality of life impairment increase with severity of PD. Parkinsonism Relat Disord 9(3):163–168

    Article  PubMed  CAS  Google Scholar 

  56. Das S, Maeso PA, Becker AM, Prosser JD, Adam BL, Kountakis SE (2008) Proteomics blood testing to distinguish chronic rhinosinusitis subtypes. Laryngoscope 118(12):2231–2234

    Article  PubMed  CAS  Google Scholar 

  57. Brain J, Curran M, Donaghey T, Molina R (2009) Biologic responses to nanomaterials depend on exposure, clearance, and material characteristics. Nanotoxicology 3(3):174–180

    Article  CAS  Google Scholar 

  58. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  PubMed  CAS  Google Scholar 

  59. Verma A, Uzun O, Hu Y, Hu Y, Han HS, Watson N, Chen S, Irvine DJ, Stellacci F (2008) Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles. Nat Mater 7(7):588–595

    Article  PubMed  CAS  Google Scholar 

  60. Hauser R, Godleski JJ, Hatch V, Christiani DC (2001) Ultrafine particles in human lung macrophages. Arch Environ Health 56(2):150–156

    Article  PubMed  CAS  Google Scholar 

  61. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA (2008) Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 105(38):14265–14270

    Article  PubMed  CAS  Google Scholar 

  62. Brain JD, Godleski J, Kreyling W (1994) In vivo evaluation of chemical biopersistence of nonfibrous inorganic particles. Environ Health Perspect 102(Suppl 5):119–125

    Article  PubMed  CAS  Google Scholar 

  63. Bi S, Zhang J, Cheng J [Correspondence] (2009) Call from China for joint nanotech toxicity-testing effort. Nature. 1 October 461:593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl M. Philpott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philpott, C.M., Gane, S. & McKiernan, D. Nanomedicine in otorhinolaryngology: what does the future hold?. Eur Arch Otorhinolaryngol 268, 489–496 (2011). https://doi.org/10.1007/s00405-010-1418-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-010-1418-5

Keywords

Navigation