Skip to main content
Log in

Functional effects of repeated pressure loads upon the tympanic membrane: mechanical stiffness measurements after simulated habitual sniffing

  • Otology
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

In experimental studies it was found that otitis media causes stiffness loss in the tympanic membrane, possible precursors to retraction pockets and cholesteatoma. Besides otitis media habitual sniffing behaviour is associated with the development of retractions. The present study aims to test the hypothesis that repeated sniffing manoeuvre may cause not only structural, epithelial tympanic membrane changes presumed to be possible precursors to retractions, but also tympanic membrane stiffness loss, another possible mediator for the development of retractions. An experimental model with a pressure chamber was used to mimic the pressure conditions for the tympanic membrane in habitual sniffers’ ears. The stiffness properties of twelve Mongolian gerbil tympanic membranes were measured with moiré interferometry after varying time up to 12 days with repeated pressure loading. Three days later, lower overall displacement were obtained in two ears; after 7–12 days the displacement readings were normal. This study with maximum of 12 days of pressure loading did not verify the hypothesis that habitual “sniffing” impairs the stiffness of the tympanic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hergils L, Magnusson B (1990) Human middle ear gas composition studied by mass spectrometry. Acta Otolaryngol 110(1–2):92–99. doi:10.3109/00016489009122520

    Article  CAS  PubMed  Google Scholar 

  2. Hergils L, Magnusson B (1987) Middle-ear pressure under basal conditions. Arch Otolaryngol Head Neck Surg 113(8):829–832

    Article  CAS  PubMed  Google Scholar 

  3. Tideholm B, Jönsson S, Carlborg B, Welinder R, Grenner J (1996) Continuous 24-hour measurement of middle ear pressure. Acta Otolaryngol 116(4):581–588. doi:10.3109/00016489609137893

    Article  CAS  PubMed  Google Scholar 

  4. Falk B (1981) Negative middle ear pressure induced by sniffing. A tympanometric study in persons with healthy ears. J Otolaryngol 10(4):299–305

    CAS  PubMed  Google Scholar 

  5. Taylor DM, O`Toole KS, Ryan CM (2003) Experienced scuba divers in Australia and the United States suffer considerable injury and morbidity. Wilderness Environ Med 14(2):83–88

    Article  PubMed  Google Scholar 

  6. Klingman C, Praetorius M, Baumann I, Plinkert PK (2007) Otorhinolaryngologic disorders and diving accidents: an analysis of 306 divers. Eur Arch Otorhinolaryngol 264(10):1243–1251. doi:10.1007/s00405-007-0353-6

    Article  Google Scholar 

  7. Phillips YY, Zajtchuk JT (1989) Blast injuries of the ear in military operations. Ann Otol Rhinol Laryngol Suppl 140:3–4

    Article  CAS  PubMed  Google Scholar 

  8. Mrena R, Pääkkönen R, Bäck L, Pirvola U, Ylikoski J (2004) Otologic consequences of blast exposure: a Finnish case study of a shopping mall bomb explosion. Acta Otolaryngol 124(8):946–952. doi:10.1080/00016480310017045

    Article  PubMed  Google Scholar 

  9. von Unge M, Decraemer WF, Dirckx JJ, Bagger-Sjöbäck D (1995) Shape and displacement patterns of the gerbil tympanic membrane in experimental otitis media with effusion. Hear Res 82:184–196. doi:10.1016/0378-5955(94)00017-K

    Article  Google Scholar 

  10. Larsson C, Dirckx JJ, Bagger-Sjöbäck D, von Unge M (2005) Pars flaccida displacement pattern in otitis media with effusion in the gerbil. Otol Neurotol 26:337–343. doi:10.1097/01.mao.0000169770.31292.75

    Article  PubMed  Google Scholar 

  11. von Unge M, Decraemer WF, Dirckx JJJ, Bagger-Sjöbäck D (1999) Tympanic membrane displacement patterns in experimental cholesteatoma. Hear Res 128:1–15. doi:10.1016/S0378-5955(98)00183-X

    Article  Google Scholar 

  12. Larsson C, Dirckx JJ, Decraemer WF, Bagger-Sjöbäck D, von Unge M (2003) Pars flaccida displacement pattern in purulent otitis media in the gerbil. Otol Neurotol 24:358–364. doi:10.1097/00129492-200305000-00002

    Article  PubMed  Google Scholar 

  13. Ramos CC, Rapoport PB (2005) Brito Neto RV clinical and tympanometric findings in repeated recreational scuba diving. Travel Med Infect Dis 3(1):19–25. doi:10.1016/j.tmaid.2004.06.002

    Article  PubMed  Google Scholar 

  14. Ivarsson A, Tjernström O, Uddman R (1980) The elastic properties of the tympanic membrane system in divers and non-divers. Acta Otolaryngol 89(1–2):33–36. doi:10.3109/00016488009127105

    Article  CAS  PubMed  Google Scholar 

  15. Magnusson B, Falk B (1983) Eustachian tube malfunction and middle ear disease in new perspective. J Otolaryngol 12(3):187–193

    Google Scholar 

  16. Falk B, Magnusson B (1984) Evacuation of the middle ear by sniffing: a cause of high negative pressure and development of middle ear disease. Otolaryngol Head Neck Surg 92(3):312–318

    Article  CAS  PubMed  Google Scholar 

  17. Magnusson K, Hellström S, Magnusson B (1995) Structural changes in the rat tympanic membrane following repeated pressure loads. Eur Arch Otorhinolaryngol 252(2):76–82. doi:10.1007/BF00168024

    Article  Google Scholar 

  18. von Unge M, Decraemer WF, Bagger-Sjöbäck D, Dirckx JJ (1993) Displacement of the gerbil tympanic membrane under static pressure variations measured with a real-time differential moiré interferometer. Hear Res 70:229–242. doi:10.1016/0378-5955(93)90161-S

    Article  Google Scholar 

  19. Bunne M, Falk B, Hellström S, Magnusson B (1999) The character and consequences of disturbing sound sensations in retraction type middle ear disease. Int J Pediatr Otorhinolaryngol 51(1):11–21. doi:10.1016/S0165-5876(99)00249-9

    Article  CAS  PubMed  Google Scholar 

  20. Dirckx JJJ, Decraemer WF (1992) Area change and volume displacement of the human tympanic membrane under static pressure. Hear Res 62:99–104. doi:10.1016/0378-5955(92)90206-3

    Article  CAS  PubMed  Google Scholar 

  21. Dirckx JJJ, Decraemer WF (1991) Human tympanic membrane deformation under static pressure. Hear Res 51:93–106. doi:10.1016/0378-5955(91)90009-X

    Article  CAS  PubMed  Google Scholar 

  22. Dirckx JJJ, Decraemer WF (2001) Effect of middle ear components on eardrum static deformation. Hear Res 157:124–137. doi:10.1016/S0378-5955(01)00290-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The technical assistance of Mikael Eriksson, Karolinska University Hospital, is gratefully acknowledged. The study was supported by grants from Centrum för Klinisk Forskning, Landstinget Västmanland, Stiftelsen Tysta Skolan and Gösta Fraenkels Stiftelse för Medicinsk Forskning, Sweden. The study was approved by Stockholms Norra Djurförsöksetiska Nämnd (Dnr. N. 170/94).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus von Unge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Unge, M., Dircks, J.J. Functional effects of repeated pressure loads upon the tympanic membrane: mechanical stiffness measurements after simulated habitual sniffing. Eur Arch Otorhinolaryngol 266, 1219–1224 (2009). https://doi.org/10.1007/s00405-008-0906-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-008-0906-3

Keywords

Navigation