Skip to main content
Log in

Differences in aerodynamic characteristics of new and dysfunctional Provox®2 voice prostheses in vivo

  • Laryngology
  • Published:
European Archives of Oto-Rhino-Laryngology and Head & Neck Aims and scope Submit manuscript

Abstract

Tracheoesophageal voice prostheses need to be replaced due to increased airflow resistance or retrograde leakage of fluid into the trachea as a consequence of biofilm formation. Previous in vitro studies show a change of aerodynamic features of biofilm covered voice prostheses after removal of the prostheses out of the patient. To assess these changes in an in situ situation, aerodynamic characteristics were measured within 45 patients at the beginning and at the end of the wearing process of the Provox 2 voice prosthesis. As a consequence, the influence of biofilm formation on aerodynamic characteristics can be evaluated. In the majority of cases, leakage through the prosthesis was the reason for replacement. No differences were found in the total flow, volume range and intratracheal pressure (ITP) of the voice prostheses measured. The airflow resistance of biofilm covered prostheses was significantly reduced compared to new clean prostheses. However, no correlation was found between the extent of biofilm and the different aerodynamic features measured. Biofilm formation on the Provox 2 is responsible for both reduction in airflow resistance and leakage through the prosthesis by deterioration of the silicone rubber material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blom ED, Hamaker RC (1996) TRacheoesophageal voice restoration following total laryngectomy. In: Myers EN, Suen J (eds) Cancer of the head and Neck. WB Saunders Publishers, Philadelphia, pp 839–852

    Google Scholar 

  2. Zijlstra RJ, Mahieu HF, Lith-Bijl JT, Schutte HK (1991) Aerodynamic properties of the low-resistance Groningen button. Arch Otolaryngol Head Neck Surg 117(6):657–661

    PubMed  CAS  Google Scholar 

  3. Hilgers FJ, Cornelissen MW, Balm AJM (1993) Aerodynamic characteristics of the low-resistance, indwelling Provox voice prosthesis. Eur Arch Otorhinolaryngol 250(7):375–378

    Article  PubMed  CAS  Google Scholar 

  4. Mahieu HF, van Saene HK, Rosingh HJ, Schutte HK (1986) Candida vegetations on silicone voice prostheses. Arch Otolaryngol Head Neck Surg 112(3):321–325

    PubMed  CAS  Google Scholar 

  5. Neu TR, Dijk F, Verkerke GJ, van der Mei HC, Busscher HJ (1992) Scanning electron microscopy study of biofilms on silicone voice prostheses. Cells and Mater 2(3):261–269

    Google Scholar 

  6. Neu TR, van der Mei HC, Busscher HJ, Dijk F, Verkerke GJ (1993) Biodeterioration of medical-grade silicone rubber used for voice prostheses: a SEM study. Biomaterials 14(6):459–464

    Article  PubMed  CAS  Google Scholar 

  7. van Weissenbruch R, Albers FW, Bouckaert S, Nelis HJ, Criel G, Remon JP, et al (1997) Deterioration of the Provox silicone tracheoesophageal voice prosthesis: microbial aspects and structural changes. Acta Otolaryngol 117(3):452–458

    Article  PubMed  Google Scholar 

  8. Ell SR, Mitchell AJ, Parker AJ (1995) Microbial colonization of the Groningen speaking valve and its relationship to valve failure. Clin Otolaryngol 20(6):555–556

    Article  CAS  Google Scholar 

  9. Elving GJ, Der Mei HC, Busscher HJ, van Weissenbruch R, Albers FW (2001) Air-flow resistances of silicone rubber voice prostheses after formation of bacterial and fungal biofilms. J Biomed Mater Res 58(4):421–426

    Article  PubMed  CAS  Google Scholar 

  10. Oosterhof JJ, Elving GJ, Stokroos I, Nieuw Amerongen A, van der Mei HC, Busscher HJ et al (2003) The influence of antimicrobial peptides and mucolytics on the integrity of biofilms consisting of bacteria and yeasts as affecting voice prosthetic air flow resistances. Biofouling 19(6):347–353

    Article  PubMed  CAS  Google Scholar 

  11. Cervera T, Miralles JL, Gonzalez-Alvarez J (2001) Acoustical analysis of Spanish vowels produced by laryngectomized subjects. J Speech Lang Hear Res 44(5):988–996

    Article  PubMed  CAS  Google Scholar 

  12. Leunisse C, van Weissenbruch R, Busscher HJ, van der Mei HC, Dijk F, Albers FW (2001) Biofilm formation and design features of indwelling silicone rubber tracheoesophageal voice prostheses—an electron microscopical study. J Biomed Mater Res 58(5):556–563

    Article  PubMed  CAS  Google Scholar 

  13. Ackerstaff AH, Hilgers FJ, Meeuwis CA, Van Der Velden LA, van den Hoogen FJ, Marres HA et al (1999) Multi-institutional assessment of the Provox 2 voice prosthesis. Arch Otolaryngol Head Neck Surg 125(2):167–173

    PubMed  CAS  Google Scholar 

  14. Op de Coul BM, Hilgers FJ, BAlm AJ, Tan IB, van den Hoogen FJ, van Tinteren H (2000) A decade of postlaryngectomy vocal rehabilitation in 318 patients; a single Institution’s experience with consistent application of provox indwelling voice prostheses. Arch Otolaryngol Head Neck Surg 126(11):1320–1328

    Google Scholar 

  15. van Weissenbruch R, Bouckaert S, Remon JP, Nelis HJ, Aerts R, Albers FW (1997) Chemoprophylaxis of fungal deterioration of the Provox silicone tracheoesophageal prosthesis in postlaryngectomy patients. Ann Otol Rhinol Laryngol 106(4):329–337

    PubMed  Google Scholar 

  16. Schutte HK, Nieboer GL (2002) Aerodynamics of esophageal voice production with and without a Groningen voice prosthesis. Folia Phoniatr Logop (54):8–18

    Article  Google Scholar 

  17. Heaton JM, Sanderson D, Dunsmore IR, Parker AJ (1996) In vivo measurements of indwelling tracheo-oesophageal prostheses in alaryngeal speech. Clin Otolaryngol 21(4):292–296

    Article  CAS  Google Scholar 

  18. Chung RP, Patel P, Ter Keurs M, Lith Bijl JT, Mahieu HF (1998) In vitro and in vivo comparison of the low-resistance Groningen and the Provox tracheosophageal voice prostheses. Rev Laryngol Otol Rhinol (Bord) 119(5):301–306

    CAS  Google Scholar 

  19. Heaton JM, Parker AJ (1994) In vitro comparison of the Groningen high resistance, Groningen low resistance and Provox speaking valves. J Laryngol Otol 108(4):321–324

    Article  PubMed  CAS  Google Scholar 

  20. Parker AJ, Stevens JC, Wickham MH, Clegg RT (1992) Characteristics of Groningen tracheo-oesophageal speaking valves prior to insertion and after removal for failure. J Laryngol Otol 106(6):521–524

    Article  PubMed  CAS  Google Scholar 

  21. Hilgers FJ, Ackerstaff AH, Balm AJ, Van den Brekel MW, Bing Tan I, Persson JO (2003) A new problem-solving indwelling voice prosthesis, eliminating the need for frequent Candida- and “under pressure”-related replacements: Provox ActiValve. Acta Otolaryngol 123(8):972–979

    Article  PubMed  Google Scholar 

  22. Neu TR, Verkerke GJ, Herrmann IF, Schutte HK, van der Mei HC, Busscher HJ (1994) Microflora on explanted silicone rubber voice prostheses: taxonomy, hydrophobicity and electrophoretic mobility. J Appl Bacteriol 76(5):521–528

    PubMed  CAS  Google Scholar 

  23. Schwandt LQ, van Weissenbruch R, van der Mei HC, Busscher HJ, Albers FW (2005) The effect of dairy products on the lifetime of Provox®2 voice prostheses in vitro and in vivo. Head Neck (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonora Q. Schwandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwandt, L.Q., Tjong-Ayong, HJ., van Weissenbruch, R. et al. Differences in aerodynamic characteristics of new and dysfunctional Provox®2 voice prostheses in vivo. Eur Arch Otorhinolaryngol 263, 518–523 (2006). https://doi.org/10.1007/s00405-005-0001-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-005-0001-y

Keywords

Navigation