Skip to main content

Advertisement

Log in

Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography

  • Miscellaneous
  • Published:
European Archives of Oto-Rhino-Laryngology Aims and scope Submit manuscript

Abstract

At the present time, the partial and/or complete reconstruction of an auricle from autologous rib cartilage is one of most widely published techniques. In the field of tissue engineering, different techniques have been described to generate cartilage tissue using isolated chondrocytes. The basis of these tissue-engineering techniques is bioresorbable or non-bioresorbable biomaterials, which serve as a three-dimensional cell carrier. Tissue engineering of an auricle requires preformed bioresorbable biomaterials designed to fit the form of a patient's auricular defect. Three-dimensional imaging acquired from computed tomography scans or laser surface scanning has become an important tool in modern medicine. This study represents the preoperative procedures for the reconstruction of an auricle through tissue engineering in accordance with the clinical aspects. Hyaff 11, a hyaluronic acid derivative, was used as a three-dimensional cell carrier for isolated human nasoseptal chondrocytes. The chondrocytes were amplified in a conventional monolayer culture before the cells were seeded on a hyaluronic non-woven mesh and cultured in vitro for 4 weeks. The chondrogenic potential of human nasal chondrocytes in Hyaff 11 was investigated by confocal laser scanning microscopy, histology (toluidine blue) and immunohistochemistry (collagen type II). Computer-aided design (CAD) and manufacture of an auricle model with stereolithographical methods were used for the prefabrication of a bioresorbable three-dimensional cell carrier designed in the form of a patient's auricular defect. The cell carrier used was Hyaff 11, a fully benzyl-esterified hyaluronic acid derivative. Confocal laser scanning microscopy has shown good cell attachment, a homogenous distribution of amplified chondrocytes and a viability of more than 90%. After 4 weeks in vitro culture the human nasoseptal chondrocytes synthesized new cartilage with the expression of cartilage-specific collagen type II. In order to shape a patient's designed scaffold the auricle model was fitted exactly and symetrically to the contralateral side. Subsequently, the mirror image patient-specific model was used to prepare an identical scaffold model made of a fully benzyl-esterified hyaluronic acid derivative. The bioresorbable scaffold that was produced gave a satisfactory representation of auricle structure. Bioresorbable preformed biomaterials in the form of a patient's auricle defect represent an important prerequisite for the tissue engineering of autologous auricle grafts. Hyaff 11 seems to be a promising material for tissue engineering of cartilage transplants, and the application of this approach will improve conventional reconstructive surgery in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Aigner J, Wilmes E, Naumann A, Bujía J (1997) Die realitätsgetreue Darstellung von Zellsystemen mit Hilfe der Konfokalen-Laser-Scanning-Mikroskopie am Beispiel dreidimensional kultivierter Chondrozyten. Laryngo Rhino Otol 76:248–251

    Google Scholar 

  2. Aigner J, Tegeler J, Hutzler P, Campocchia D, Pavesio A, Hammer C, Kastenbauer E, Naumann A (1998) Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyluronic acid benzyl ester. J Biomed Mat Res 42:172–181

    Article  CAS  Google Scholar 

  3. Berghaus A, Axhausen M, Handrock M (1983) Poröse Kunststoffe für die Ohrmuschelplastik. Laryngo Rhino Otol 62:320–327

    CAS  Google Scholar 

  4. Bill JS, Reuther JF, Dittmann W, Kubler N, Meier JL, Pistner H, Wittenberg G (1995) Stereolithography in oral and maxillofacial operation planning. Int J Oral Maxillofac Surg 24:98–103

    CAS  PubMed  Google Scholar 

  5. Breitbart AS, Grande DA, Mason JM (1998) Tissue engineering and gene therapy in facial plastic surgery. Curr Opin Otolaryngol Head Neck Surg 6:226–231

    Google Scholar 

  6. Brent B (1992) Auricular repair with autogenous rib cartilage grafts: two decades of experience with 600 cases. Plast Reconstr Surg 90:355–374

    CAS  PubMed  Google Scholar 

  7. Brent B (1999) Technical advance in ear reconstruction with autogeneous rib cartilage grafts: personal experience with 1200 cases. Plast Reconstr Surg 104:319–338

    CAS  PubMed  Google Scholar 

  8. Britt JC, Park SS (1998) Autogenous tissue-engineered cartilage: evaluation as an implant material. Arch Otolaryngol Head and Neck Surg 124:671–677

    CAS  Google Scholar 

  9. Brix F, Lamprecht JT (1987) Individuelle Schädelmodellherstellung auf der Grundlage computertomographischer Informationen. Fortschr Kiefer Gesichtschir 32:74–77

    CAS  PubMed  Google Scholar 

  10. Brunner FX (1993) Implantatmaterialien—was hat sich wo und wann bewährt? Eur Arch Otorhinolaryngol [Suppl] 1:311–336

    Google Scholar 

  11. Campoccia D, Doherty P, Radice M, Brun P, Abatangelo G, Williams DF (1998) Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19:2101–2127

    CAS  PubMed  Google Scholar 

  12. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA (1997) Transplantation of chondrocytes utilizing a polymer cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 100:297–302

    CAS  PubMed  Google Scholar 

  13. Caplan AI, Elyaderani M, Mochizuki Y, Wakitani S, Goldberg VM (1997) Principles of cartilage repair and regeneration. Clin Orthop 342:254–269

    PubMed  Google Scholar 

  14. Cima LG, Vacanti JP, Vacanti C, Ingber D, Mooney D, Langer R (1991) Tissue engineering by cell transplantation using degradable polymer substrates. J Biochem Eng 113:143–151

    CAS  Google Scholar 

  15. Converse JM (1963) Construction of the auricle in congenital microtia. Plast Reconstr Surg 32:425–435

    CAS  Google Scholar 

  16. Dickson WA, Inglis TJ (1988) Cialit preserved cartilage: failure to guarantee sterility. Br J Plast Surg 41:408–409

    CAS  PubMed  Google Scholar 

  17. Dounchis JS, Goomer RS, Harwood FL, Khatod M, Coutts RD, Amiel D (1997) Chondrogenic phenotype of perichondrium-derived chondroprogenitor cells is influenced by transforming growth factor beta 1. J Orthop Res 15:803–807

    CAS  PubMed  Google Scholar 

  18. Erickson DM, Chance D, Schmitt S, Mathis J (1999) An opinion survey of reported benefits from the use of stereolithographic models. J Oral Maxillofac Surg 57:1040–1043

    CAS  PubMed  Google Scholar 

  19. Firmin F (1998) Ear reconstruction in cases of typical microtia. Personal experience based on 352 microtic ear corrections. Scan J Plast Reconstr Surg Hand 32:35–47

    Article  CAS  Google Scholar 

  20. Hammer C, Bujía J (1992) Immunologie vitaler und konservierter Transplantate. Eur Arch Otorhinolaryngol [Suppl] 1:3-26

    Google Scholar 

  21. Holtmann S, Kastenbauer E (1993) Der Aufbau einer mißgebildeten Ohrmuschel durch eine Endoprothese aus porösem Polyäthylen mit integriertem Sogsystem. Laryngo Rhino Otol 72:43–47

    CAS  Google Scholar 

  22. Huettenbrink KB, Weidenfeller P (1995) Sind Cialit-konservierte Ossikel als Mittelohrimplantate bakteriologisch noch vertretbar? Laryngo Rhino Otol 69:327–332

    Google Scholar 

  23. Hull C (1991) Die 3D-System-Story. Ciba-Geigy Kunststoff Aspekte 26:2

  24. Kamil SH, Kojima K, Vacanti MP, Bonassar LJ, Vacanti CA, Eavey RD (2003) In vitro tissue engineering to generate a human-sized auricle and nasal tip. Laryngoscope 113:90–94

    PubMed  Google Scholar 

  25. Kastenbauer E (1983) Konservierung und Anwendungsmöglichkeiten allogener (homologer) Transplantate im Hals-Nasen-Ohrenbereich. HNO 31:371–380

    CAS  PubMed  Google Scholar 

  26. Kelley TF, Moulton-Barrett R, Dugan FM, Crumley RL (1998) The use of 3-dimensional models in auricular reconstruction. Arch Otolaryngol Head Neck Surg 124:335–338

    CAS  PubMed  Google Scholar 

  27. Klein-Nulend J, Louwerse RT, Heyligers IC (1998) Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro. J Biomed Mater Res 40:614–620

    Google Scholar 

  28. Kubler N, Reuther J, Kirchner T, Priessnitz B, Sebald W (1993) Osteoinductive, morphologic and biomechanical properities of autolyzed, antigen-extracted, allogeneic human bone. J Oral Maxillofac Surg 51:1346–1357

    CAS  PubMed  Google Scholar 

  29. Mankovich NJ, Cheeseman AM, Stoker NG (1990) The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging 3:200–203

    CAS  PubMed  Google Scholar 

  30. Marsh JL, Vannier MW (1983) Surface imaging from computerized tomograpghic scans. Surgery 94:759–767

    Google Scholar 

  31. Mikos AG, Lyman MD, Freed LE, Langer R (1993) Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycoloic acid) foams for tissue culture. Biomaterials 15:55–58

    Article  Google Scholar 

  32. Nagata S (1993) A new method of total reconstruction of the auricle for microtia. Plast Reconstr Surg 92:187–190

    CAS  PubMed  Google Scholar 

  33. Nagata S (1994) Modification of the stages in total reconstruction of the auricle: Part II. Grafting the three dimensional costal cartilage framework for concha-type microtia. Plast Reconstr Surg 93:231–242

    CAS  PubMed  Google Scholar 

  34. Naumann A, Rotter N, Bujía J, Aigner J (1998) Tissue engineering of autologous cartilage transplants for rhinology. Am J Rhinol 12:59–63

    CAS  PubMed  Google Scholar 

  35. Park SS, Ward MJ (1995) Tissue-engineered cartilage for implantation and grafting. Facial Plast Surg 22:278–283

    Google Scholar 

  36. Puelacher WC, Mooney D, Langer R, Upton J, Vacanti JP, Vacanti CA (1994) Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes. Biomaterials 15:774–778

    CAS  PubMed  Google Scholar 

  37. Rastrelli A, Beccaro M, Biviano F (1990) Hyaluronic acid esters, a new class of semisynthetic biopolymers: chemical and physiochemical properities. Clin Implant Mater 9:199–205

    Google Scholar 

  38. Rettinger G (1992) Autogene und allogene Knorpeltransplantate in der Kopf- und Halschirurgie (ohne Mittelohr und Trachea). Eur Arch Otorhinolaryngol [Suppl] 1:127–162

    Google Scholar 

  39. Rodriguez A, Cao YL, Ibarra C, Pap S, Vacanti M, Eavey RD, Vacanti CA (1999) Characteristics of cartilage engineered from human pediatric auricular cartilage. Plast Reconstr Surg 103:1111–1119

    CAS  PubMed  Google Scholar 

  40. Rotter N, Aigner J, Naumann A, Planck H, Hammer C, Burmester G, Sittinger M (1998) Cartilage reconstruction in head and neck surgery: comparison of resorbable polymer scaffolds for tissue engineering of human septal cartilage. J Biomed Mat Res 42:347–356

    Article  CAS  Google Scholar 

  41. Rueckert F, Brown F (1987) Microtia, part 4. In: Stark RB (ed) Plastic surgery of the head and neck, vol. 1. Curchill Livingstone, New York, pp 488–523

  42. Solchaga LA, Dennis JE, Goldberg VM, Caplan AI (1999) Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. J Orthop Res 17:205–213

    CAS  PubMed  Google Scholar 

  43. Tanzer RC (1978) Microtia: a long-term follow-up of 44 reconstructed auricles. Plast Reconstr Surg 61:161–166

    CAS  PubMed  Google Scholar 

  44. Ten Koppel PG, van Osch GJ, Verwoerd CD, Verwoerd-Verhoef HL (1998) Efficiacy of perichondrium and a trabecular demineralized bone matrix for generating cartilage. Plast Reconstr Surg 102:2012–2020

    PubMed  Google Scholar 

  45. Vacanti CA, Vacanti JP (1994) Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am 27:263–276

    CAS  PubMed  Google Scholar 

  46. Wakitani S, Goto T, Young RG, Mansour JM, Goldberg VM, Caplan AI (1998) Repair of large full-thickness articular cartilage defects with allograft articular chondrocytes embedded in a collagen gel. Tissue Eng 4:429–444

    CAS  PubMed  Google Scholar 

  47. Wald HL, Sarakinos G, Lyman MD, Mikos AG, Vacanti JP, Langer R (1993) Cell seeding in porous transplantation devices. Biomaterials 14:270–278

    CAS  PubMed  Google Scholar 

  48. Williams DF, O'Regan M, Righetto Z (1995) In vitro and in vivo degradation of absorbable biomaterials composed of Hyaff polymers, a novel class of semisynthetic hyaluronan derivatives. In: Proceedings of the 21st Annual Meeting of the Society for Biomaterials, San Francisco, 28:180

  49. Wustrow TPU, Kastenbauer E (1991) Wie ich es mache: Zur Nomenklatur der Transplantation in der Hals-Nasen-Ohren-Heilkunde. Laryngo Rhino Otol 70:387–388

    CAS  Google Scholar 

  50. Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80:1745–1757

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. Marc Waltenheimer, Department of Otorhinolaryngology, Head and Neck Surgery, University of Munich, Germany, for his excellent technical assistance in the preparation of the cast model. The fabrication of Hyaff 11 as a bioresorbable scaffold in the form of a patient's auricle was kindly performed by Fidia Advanced Biopolymers (FAB, Abano Terme, Italy). In this study we used a specific anti-collagen type-II antibody kindly provided by the Developmental Studies of Hybridoma Bank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Naumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, A., Aigner, J., Staudenmaier, R. et al. Clinical aspects and strategy for biomaterial engineering of an auricle based on three-dimensional stereolithography. Eur Arch Otorhinolaryngol 260, 568–575 (2003). https://doi.org/10.1007/s00405-003-0636-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00405-003-0636-5

Keywords

Navigation