Skip to main content
Log in

A risk score for early predicting bloodstream infections in febrile obstetric patients: a pilot study

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Early prediction of bloodstream infections (BSI) among obstetric patients remains to be a challenge for clinicians. The objective of this study was to develop a risk score and assess its discriminative ability in febrile obstetric patients in a maternal intensive care unit (ICU).

Methods

Between May 2015 and August 2020, a total of 497 febrile obstetric patients were categorized into BSI group (n = 276) and Non-BSI group (n = 221) based on the result of blood cultures. White blood cell count, C-reactive protein (CRP), procalcitonin (PCT), time of interval from amniorrhea to fever (IFAF) and maximum body temperature (Tmax) were compared between the two groups. All patients were divided into training set (n = 298) and validation set (n = 199). The risk score was established using univariate and multivariate logistic regression from patients in the training set, and its discriminative ability was tested among patients in the validation set.

Results

The levels of neutrophil, CRP, PCT, IFAF and Tmax were significantly higher in BSI group than those in Non-BSI group. PROM, Tmax, neutrophil and CRP acted as independent predictive factors for BSI in the training set. The area under the receiver operating characteristic curve of risk score for early prediction of BSI in the training, validation set and the whole population was 0.829 (95% CI 0.783–0.876), 0.848 (95% CI 0.792–0.903) and 0.838 (95% CI 0.803–0.873), respectively.

Conclusion

The risk score has a feasible discriminatory ability in early prediction of BSI in febrile obstetric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The dataset used and analyzed for this submission is available from the corresponding author on reasonable request.

References

  1. Timbrook TT, Morton JB, McConeghy KW, Caffrey AR, Mylonakis E, LaPlante KL (2017) The effect of molecular rapid diagnostic testing on clinical outcomes in bloodstream infections: a systematic review and meta-analysis. Clin Infect Dis 64(1):15–23. https://doi.org/10.1093/cid/ciw649

    Article  PubMed  Google Scholar 

  2. Society for Maternal-Fetal Medicine, Plante LA, Pacheco LD, Louis JM (2019) SMFM consult series #47: Sepsis during pregnancy and the puerperium. Am J Obstet Gynecol 220(4):B2–B10. https://doi.org/10.1016/j.ajog.2019.01.216

    Article  Google Scholar 

  3. Bamfo JEAK (2013) Managing the risks of sepsis in pregnancy. Best Pract Res Clin Obstet Gynaecol 27(4):583–595. https://doi.org/10.1016/j.bpobgyn.2013.04.003

    Article  PubMed  Google Scholar 

  4. Roussis P, Rosemond RL, Glass C, Boehm FH (1991) Pre term premature rupture of membranes: detection of infection. Am J Obstet Gynecol 165(4):1099–1104. https://doi.org/10.1016/0002-9378(91)90479-b

    Article  CAS  PubMed  Google Scholar 

  5. Wilkie GL, Prabhu M, Ona S, Easter SR, Tuomala RE, Riley LE, Diouf K (2019) Microbiology and antibiotic resistance in peripartum bacteremia. Obstet Gynecol 133(2):269–275. https://doi.org/10.1097/AOG.0000000000003055

    Article  CAS  PubMed  Google Scholar 

  6. Galvão A, Braga AC, Gonçalves DR, Guimarães JM, Braga J (2016) Sepsis during pregnancy or the postpartum period. J Obstet Gynaecol 36(6):735–743. https://doi.org/10.3109/01443615.2016.1148679

    Article  PubMed  Google Scholar 

  7. Zadroga R, Williams DN, Gottschall R, Hanson K, Nordberg V, Deike M, Kuskowski M, Carlson L, Nicolau DP, Sutherland C, Hansen GT (2013) Comparison of 2 blood culture media shows significant differences in bacterial recovery for patients on antimicrobial therapy. Clin Infect Dis 56(6):790–797. https://doi.org/10.1093/cid/cis1021

    Article  CAS  PubMed  Google Scholar 

  8. Albright CM, Mehta ND, Rouse DJ, Hughes BL (2016) Sepsis in pregnancy: identification and management. J Perinat Neonatal Nurs 30(2):95–105. https://doi.org/10.1097/JPN.0000000000000159

    Article  PubMed  Google Scholar 

  9. Paccolat C, Harbarth S, Courvoisier D, Irion O, de Tejada BM (2011) Procalcitonin levels during pregnancy, delivery and postpartum. J Perinat Med 39(6):679–683. https://doi.org/10.1515/jpm.2011.082

    Article  CAS  PubMed  Google Scholar 

  10. Kristensen K, Wide-Swensson D, Lindstrom V, Schmidt C, Grubb A, Strevens H (2009) Serum amyloid a protein and C-reactive protein in normal pregnancy and preeclampsia. Gynecol Obstet Invest 67(4):275–280. https://doi.org/10.1159/000214081

    Article  CAS  PubMed  Google Scholar 

  11. Zhang W, Zheng Y, Feng X, Chen M, Kang Y (2019) Systemic inflammatory response syndrome in Sepsis-3: a retrospective study. BMC Infect Dis 19(1):139. https://doi.org/10.1186/s12879-019-3790-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bauer ME, Bauer ST, Rajala B, MacEachern MP, Polley LS, Childers D, Aronoff DM (2014) Maternal physiologic parameters in relationship to systemic inflammatory response syndrome criteria: a systematic review and meta-analysis. Obstet Gynecol 124(3):535–541. https://doi.org/10.1097/AOG.0000000000000423

    Article  CAS  PubMed  Google Scholar 

  13. Easter SR, Molina RL, Venkatesh KK, Kaimal A, Tuomala R, Riley LE (2017) Clinical risk factors associated with peripartum maternal bacteremia. Obstet Gynecol 130(4):710–717. https://doi.org/10.1097/AOG.0000000000002266

    Article  PubMed  Google Scholar 

  14. Li L, Yan Y, Qi H, Qin J, Ren L, Zhang Y (2020) A risk score for the early prediction of postpartum bloodstream infections in patients with premature rupture of membranes: a pilot study. Int J Gynaecol Obstet. https://doi.org/10.1002/ijgo.13169

    Article  PubMed  PubMed Central  Google Scholar 

  15. Baron EJ, Miller JM, Weinstein MP, Richter SS, Gilligan PH, Thomson RB Jr, Bourbeau P, Carroll KC, Kehl SC, Dunne WM, Robinson-Dunn B, Schwartzman JD, Chapin KC, Snyder JW, Forbes BA, Patel R, Rosenblatt JE, Pritt BS (2013) A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2013 recommendations by the Infectious Diseases Society of America (IDSA) and the American Society for Microbiology (ASM)(a). Clin Infect Dis 57(4):e22–e121. https://doi.org/10.1093/cid/cit278

    Article  PubMed  Google Scholar 

  16. Li K, Yu H, Wang X, Liu X (2016) Predictive value of procalcitonin or C-reactive protein for subclinical intrauterine infection in patients with premature rupture of membranes (PROM). J Prenat Med 10(3–4):23–28. https://doi.org/10.11138/jpm/2016.10.3.023

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yan ST, Sun LC, Jia HB, Gao W, Yang JP, Zhang GQ (2017) Procalcitonin levels in bloodstream infections caused by different sources and species of bacteria. Am J Emerg Med 35(4):579–583. https://doi.org/10.1016/j.ajem.2016.12.017

    Article  PubMed  Google Scholar 

  18. Magrini L, Gagliano G, Travaglino F, Vetrone F, Marino R, Cardelli P, Salerno G, Di Somma S (2014) Comparison between white blood cell count, procalcitonin and C reactive protein as diagnostic and prognostic biomarkers of infection or sepsis in patients presenting to emergency department. Clin Chem Lab Med 52(10):1465–1472. https://doi.org/10.1515/cclm-2014-0210

    Article  CAS  PubMed  Google Scholar 

  19. Hu Y, Yang M, Zhou Y, Ding Y, Xiang Z, Yu L (2017) Establishment of reference intervals for procalcitonin in healthy pregnant women of Chinese population. Clin Biochem 50(3):150–154. https://doi.org/10.1016/j.clinbiochem.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  20. Arora R, Campbell JP, Simon G, Sahni N (2016) Does serum procalcitonin aid in the diagnosis of bloodstream infection regardless of whether patients exhibit the systemic inflammatory response syndrome? Infection 45(3):291–298. https://doi.org/10.1007/s15010-016-0965-0

    Article  CAS  PubMed  Google Scholar 

  21. Chen C-M, Chan K-S, Chao H-C, Lai C-C (2016) Diagnostic performance of procalcitonin for bacteremia in patients with severe dengue infection in the intensive care unit. J Infect 73(1):93–95. https://doi.org/10.1016/j.jinf.2016.03.013

    Article  PubMed  Google Scholar 

  22. Cousin F, Ortega-Deballon P, Bourredjem A, Doussot A, Giaccaglia V, Fournel I (2016) Diagnostic accuracy of procalcitonin and C-reactive protein for the early diagnosis of intra-abdominal infection after elective colorectal surgery. Ann Surg 264(2):252–256. https://doi.org/10.1097/sla.0000000000001545

    Article  PubMed  Google Scholar 

  23. Mosevoll KA, Skrede S, Markussen DL, Fanebust HR, Flaatten HK, Assmus J, Reikvam H, Bruserud O (2018) Inflammatory mediator profiles differ in sepsis patients with and without bacteremia. Front Immunol 9:691. https://doi.org/10.3389/fimmu.2018.00691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Honda T, Uehara T, Matsumoto G, Arai S, Sugano M (2016) Neutrophil left shift and white blood cell count as markers of bacterial infection. Clin Chim Acta 457:46–53. https://doi.org/10.1016/j.cca.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  25. Manian FA (2012) Fever, abnormal white blood cell count, neutrophilia, and elevated serum C-reactive protein in adult hospitalized patients with bacteremia. South Med J 105(9):474–478. https://doi.org/10.1097/SMJ.0b013e3182641608

    Article  PubMed  Google Scholar 

  26. Seigel TA, Cocchi MN, Salciccioli J, Shapiro NI, Howell M, Tang A, Donnino MW (2012) Inadequacy of temperature and white blood cell count in predicting bacteremia in patients with suspected infection. J Emerg Med 42(3):254–259. https://doi.org/10.1016/j.jemermed.2010.05.038

    Article  PubMed  Google Scholar 

  27. Chalupa P, Beran O, Herwald H, Kaspříková N, Holub M (2011) Evaluation of potential biomarkers for the discrimination of bacterial and viral infections. Infection 39(5):411–417. https://doi.org/10.1007/s15010-011-0126-4

    Article  CAS  PubMed  Google Scholar 

  28. Vincent JL, Martin GS, Levy MM (2016) qSOFA does not replace SIRS in the definition of sepsis. Crit Care 20(1):210. https://doi.org/10.1186/s13054-016-1389-z

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chebbo A, Tan S, Kassis C, Tamura L, Carlson RW (2016) Maternal sepsis and septic shock. Crit Care Clin 32(1):119–135. https://doi.org/10.1016/j.ccc.2015.08.010

    Article  PubMed  Google Scholar 

  30. Mercer BM, Lewis R (1997) Preterm labor and preterm premature rupture of the membranes. Diagnosis and management. Infect Dis Clin N Am 11(1):177–201

    Article  CAS  Google Scholar 

  31. Nakajima M, Inagaki M, Ando Y, Takashima S, Takeshita K, Tominaga H, Tanaka S, Shimizu S (1988) Endotoxin-specific chromogenic assay for plasma in pregnant women, umbilical cords, neonates and children. Brain Dev 10(6):382–384

    Article  CAS  Google Scholar 

  32. Ronzoni S, D’Souza R, Shynlova O, Lye S, Murphy KE (2018) Maternal blood endotoxin activity in pregnancies complicated by preterm premature rupture of membranes. J Matern Fetal Neonatal Med. https://doi.org/10.1080/14767058.2018.1465560

    Article  PubMed  Google Scholar 

  33. Moser J, Heeringa P, Jongman RM, Zwiers PJ, Niemarkt AE, Yan R, de Graaf IA, Li R, Ravasz Regan E, Kumpers P, Aird WC, van Nieuw Amerongen GP, Zijlstra JG, Molema G, van Meurs M (2016) Intracellular RIG-I signaling regulates TLR4-independent endothelial inflammatory responses to endotoxin. J Immunol 196(11):4681–4691. https://doi.org/10.4049/jimmunol.1501819

    Article  CAS  PubMed  Google Scholar 

  34. Zhu S, Kang Y, Wang W, Cai L, Sun X, Zong Z (2019) The clinical impacts and risk factors for non-central line-associated bloodstream infection in 5046 intensive care unit patients: an observational study based on electronic medical records. Crit Care 23(1):52. https://doi.org/10.1186/s13054-019-2353-5

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all patients and their families involved in the study.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

YZ contributed to protocol/project conception and development, data analysis, manuscript writing/editing. LL contributed to data collection and data analysis, and manuscript editing. YY and HQ contributed to protocol/project conception and development, collection and analysis of data and manuscript editing. JQ contributed to data analysis and manuscript writing/editing. LR contributed to project conception and development, data collection and manuscript editing. RZ contributed to development and manuscript writing/editing.

Corresponding author

Correspondence to Yaozong Zhang.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

The study protocol was approved by the Institutional Ethics Committee of Chongqing Health Center for Women and Children (approved 23 May 2018).

Informed consent

All participants provided written consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, L., Yan, Y. et al. A risk score for early predicting bloodstream infections in febrile obstetric patients: a pilot study. Arch Gynecol Obstet 306, 85–92 (2022). https://doi.org/10.1007/s00404-021-06269-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-021-06269-3

Keywords

Navigation