Skip to main content

Advertisement

Log in

Antenatal exposure to fenoterol is not associated with the development of retinopathy of prematurity in infants born before 32 weeks of gestation

  • Maternal-Fetal Medicine
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

Despite safety concerns, β2-sympathomimetics are still widely used as tocolytic agents. β-Blockers in turn are used to treat vasculo-proliferative diseases of the newborn such as retinopathy of prematurity (ROP), which may lead to visual impairment and blindness. The scope of this study was to investigate whether antenatal exposure to the β2-sympathomimetic fenoterol contributes to the development of ROP.

Methods

For this single-center retrospective case–control study of prospectively collected clinical data, all infants born before 32 weeks of gestation between 2001 and 2012 were included. The association of prenatal exposure to fenoterol and the development of ROP were analyzed by multivariate logistic regression.

Results

n = 1134 infants < 32 weeks of gestation were screened for eligibility, out of which n = 722 met the inclusion criteria. Exposure to fenoterol (n = 505) was not associated with a higher rate of ROP (OR 0.721, 95% CI 0.463–1.122). Further, duration of exposure (days) did not alter the incidence of ROP (OR 1.001, 95% CI 0.986–1.016). Frequency distribution of different ROP stages and the need for therapeutic intervention was also not affected by prenatal exposure to fenoterol. Risk factors for the development of ROP like low birth weight, low gestational age, prolonged respiratory support and multiple gestation were confirmed in our large study cohort.

Conclusion

β2-Sympathomimetic tocolysis does not increase the rate of ROP in premature infants born < 32 weeks of gestation. Our results render fenoterol a safe tocolytic agent regarding neonatal ROP development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2197–2223. https://doi.org/10.1016/S0140-6736(12)61689-4

    Article  PubMed  Google Scholar 

  2. Haas DM, Caldwell DM, Kirkpatrick P et al (2012) Tocolytic therapy for preterm delivery: systematic review and network meta-analysis. BMJ 345:e6226. https://doi.org/10.1136/bmj.e6226

    Article  PubMed  PubMed Central  Google Scholar 

  3. Haas DM, Imperiale TF, Kirkpatrick PR et al (2009) Tocolytic therapy: a meta-analysis and decision analysis. Obstet Gynecol 113:585–594. https://doi.org/10.1097/AOG.0b013e318199924a

    Article  PubMed  Google Scholar 

  4. de Heus R, Mol BW, Erwich J-JHM et al (2009) Adverse drug reactions to tocolytic treatment for preterm labour: prospective cohort study. BMJ 338:b744–b744. https://doi.org/10.1136/bmj.b744

    Article  PubMed  PubMed Central  Google Scholar 

  5. Neilson JP, West HM, Dowswell T (2014) Betamimetics for inhibiting preterm labour. Cochrane Database Syst Rev 6: CD004352. https://doi.org/10.1002/14651858.CD004352.pub3

  6. Tolsma KW, Allred EN, Chen ML et al (2011) Neonatal bacteremia and retinopathy of prematurity: the ELGAN study. Arch Ophthalmol 129:1555–1563. https://doi.org/10.1001/archophthalmol.2011.319

    Article  PubMed  Google Scholar 

  7. Kuon RJ, Hudalla H, Seitz C et al (2015) Impaired neonatal outcome after emergency cerclage adds controversy to prolongation of pregnancy. PLoS ONE 10:e0129104. https://doi.org/10.1371/journal.pone.0129104

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dammann O, Brinkhaus M-J, Bartels DB et al (2009) Immaturity, perinatal inflammation, and retinopathy of prematurity: a multi-hit hypothesis. Early Hum Dev 85:325–329. https://doi.org/10.1016/j.earlhumdev.2008.12.010

    Article  PubMed  Google Scholar 

  9. Hartnett ME, Penn JS (2012) Mechanisms and management of retinopathy of prematurity. N Engl J Med 367:2515–2526. https://doi.org/10.1056/NEJMra1208129

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aiello LP, Pierce EA, Foley ED et al (1995) Suppression of retinal neovascularization in vivo by inhibition of vascular endothelial growth factor (VEGF) using soluble VEGF-receptor chimeric proteins. Proc Natl Acad Sci 92:10457–10461. https://doi.org/10.1073/pnas.92.23.10457

    Article  PubMed  Google Scholar 

  11. International committee for the classification of retinopathy of prematurity (2005) The international classification of retinopathy of prematurity revisited. Arch Ophthalmol 123:991–999. https://doi.org/10.1001/archopht.123.7.991

    Article  Google Scholar 

  12. Lundgren P, Kistner A, Andersson EM et al (2014) Low birth weight is a risk factor for severe retinopathy of prematurity depending on gestational age. PLoS ONE 9:e109460. https://doi.org/10.1371/journal.pone.0109460

    Article  PubMed  PubMed Central  Google Scholar 

  13. Razak A, Faden M (2019) Association of small for gestational age with retinopathy of prematurity: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed fetal neonatal-2019-316976. https://doi.org/10.1136/archdischild-2019-316976

  14. York JR, Landers S, Kirby RS et al (2004) Arterial oxygen fluctuation and retinopathy of prematurity in very-low-birth-weight infants. J Perinatol 24:82–87. https://doi.org/10.1038/sj.jp.7211040

    Article  PubMed  Google Scholar 

  15. Askie LM, Darlow BA, Finer N et al (2018) Association between oxygen saturation targeting and death or disability in extremely preterm infants in the neonatal oxygenation prospective meta-analysis collaboration. JAMA 319:2190–2201. https://doi.org/10.1001/jama.2018.5725

    Article  PubMed  PubMed Central  Google Scholar 

  16. Slidsborg C, Jensen A, Forman JL et al (2016) Neonatal risk factors for treatment-demanding retinopathy of prematurity: a danish national study. Ophthalmology 123:796–803. https://doi.org/10.1016/j.ophtha.2015.12.019

    Article  PubMed  Google Scholar 

  17. Natarajan G, Shankaran S, Nolen TL et al (2019) Neurodevelopmental outcomes of preterm infants with retinopathy of prematurity by treatment. Pediatrics 144:e20183537. https://doi.org/10.1542/peds.2018-3537

    Article  PubMed  PubMed Central  Google Scholar 

  18. Solebo AL, Teoh L, Rahi J (2017) Epidemiology of blindness in children. Arch Dis Child 102:853–857. https://doi.org/10.1136/archdischild-2016-310532

    Article  PubMed  Google Scholar 

  19. Sankar MJ, Sankar J, Chandra P (2018) Anti-vascular endothelial growth factor (VEGF) drugs for treatment of retinopathy of prematurity. Cochrane Database Syst Rev 1:CD009734. https://doi.org/10.1002/14651858.CD009734.pub3

  20. Kaempfen S, Neumann RP, Jost K, Schulzke SM (2018) Beta-blockers for prevention and treatment of retinopathy of prematurity in preterm infants. Cochrane Database Syst Rev 3: CD011893. https://doi.org/10.1002/14651858.CD011893.pub2

  21. Zhang L, Mai H-M, Zheng J et al (2014) Propranolol inhibits angiogenesis via down-regulating the expression of vascular endothelial growth factor in hemangioma derived stem cell. Int J Clin Exp Pathol 7:48–55

    PubMed  Google Scholar 

  22. Novoa M, Baselga E, Beltran S, et al (2018) Interventions for infantile haemangiomas of the skin. Cochrane Database Syst Rev 4: CD006545. https://doi.org/10.1002/14651858.CD006545.pub3

  23. Léauté-Labrèze C, Harper JI, Hoeger PH (2017) Infantile haemangioma. Lancet 390:85–94. https://doi.org/10.1016/S0140-6736(16)00645-0

    Article  PubMed  Google Scholar 

  24. Garg J, Feng Y-X, Jansen SR et al (2017) Catecholamines facilitate VEGF-dependent angiogenesis via β2-adrenoceptor-induced Epac1 and PKA activation. Oncotarget 8:44732–44748. https://doi.org/10.18632/oncotarget.17267

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mayer M, Minichmayr A, Klement F et al (2013) Tocolysis with the β-2-sympathomimetic hexoprenaline increases occurrence of infantile haemangioma in preterm infants. Arch Dis Child Fetal Neonatal Ed 98:F108–F111. https://doi.org/10.1136/archdischild-2011-301030

    Article  PubMed  Google Scholar 

  26. Hudalla H, Karmen C, Bruckner T et al (2018) Tocolysis with the β2-sympathomimetic fenoterol does not increase the occurrence of infantile hemangioma in preterm and term infants. Arch Gynecol Obstet 10:S2–7. https://doi.org/10.1007/s00404-018-4830-5

    Article  Google Scholar 

  27. Boghossian NS, Saha S, Bell EF et al (2019) Birth weight discordance in very low birth weight twins: mortality, morbidity, and neurodevelopment. J Perinatol 206:10. https://doi.org/10.1038/s41372-019-0427-5

    Article  Google Scholar 

  28. Gur Z, Tsumi E, Wainstock T et al (2018) Association between delivery of small-for-gestational age neonate and long-term pediatric ophthalmic morbidity. Arch Gynecol Obstet 298:1095–1099. https://doi.org/10.1007/s00404-018-4901-7

    Article  PubMed  Google Scholar 

  29. Ricard CA, Dammann CEL, Dammann O (2017) Screening tool for early postnatal prediction of retinopathy of prematurity in preterm newborns (STEP-ROP). Neonatology 112:130–136. https://doi.org/10.1159/000464459

    Article  PubMed  Google Scholar 

  30. Cayabyab R, Ramanathan R (2016) Retinopathy of prematurity: therapeutic strategies based on pathophysiology. Neonatology 109:369–376. https://doi.org/10.1159/000444901

    Article  PubMed  Google Scholar 

  31. Bizzarro MJ, Hussain N, Jonsson B et al (2006) Genetic susceptibility to retinopathy of prematurity. Pediatrics 118:1858–1863. https://doi.org/10.1542/peds.2006-1088

    Article  PubMed  Google Scholar 

  32. Husain SM, Sinha AK, Bunce C et al (2013) Relationships between maternal ethnicity, gestational age, birth weight, weight gain, and severe retinopathy of prematurity. J Pediatr 163:67–72. https://doi.org/10.1016/j.jpeds.2012.12.038

    Article  PubMed  Google Scholar 

  33. Mohamed S, Schaa K, Cooper ME et al (2009) Genetic contributions to the development of retinopathy of prematurity. Pediatr Res 65:193–197. https://doi.org/10.1203/PDR.0b013e31818d1dbd

    Article  PubMed  PubMed Central  Google Scholar 

  34. Movsas TZ, Spitzer AR, Gewolb IH (2015) Trisomy 21 and risk of retinopathy of prematurity. Pediatrics 136:e441–e447. https://doi.org/10.1542/peds.2015-0623

    Article  PubMed  Google Scholar 

  35. Palmer EA, Flynn JT, Hardy RJ et al (1991) Incidence and early course of retinopathy of prematurity. The cryotherapy for retinopathy of prematurity cooperative group. Ophthalmology 98:1628–1640. https://doi.org/10.1016/s0161-6420(91)32074-8

    Article  PubMed  Google Scholar 

  36. Léauté-Labrèze C, Dumas de la Roque E, Hubiche T et al (2008) Propranolol for severe hemangiomas of infancy. N Engl J Med 358:2649–2651. https://doi.org/10.1056/NEJMc0708819

    Article  PubMed  Google Scholar 

  37. Bührer C, Bassler D (2015) Oral propranolol: a new treatment for infants with retinopathy of prematurity? Neonatology 108:49–52. https://doi.org/10.1159/000381659

    Article  PubMed  Google Scholar 

  38. Praveen V, Vidavalur R, Rosenkrantz TS, Hussain N (2009) Infantile hemangiomas and retinopathy of prematurity: possible association. Pediatrics 123:e484–e489. https://doi.org/10.1542/peds.2007-0803

    Article  PubMed  Google Scholar 

Download references

Funding

No external or internal funding was received for this project.

Author information

Authors and Affiliations

Authors

Contributions

HH: protocol/project development, data collection or management, data analysis, and manuscript writing/editing. TB: data collection or management and data analysis. JP: manuscript editing. TS: manuscript editing. RJK: protocol/project development, data collection or management, data analysis, and manuscript writing/editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ruben-J. Kuon.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

The study was approved by the Heidelberg University institutional Review Board (IRB, S-094/2013). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

The institutional ethics committee waived informed consent due to the retrospective nature of the study, and pseudonymization of data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hudalla, H., Bruckner, T., Pöschl, J. et al. Antenatal exposure to fenoterol is not associated with the development of retinopathy of prematurity in infants born before 32 weeks of gestation. Arch Gynecol Obstet 301, 687–692 (2020). https://doi.org/10.1007/s00404-020-05463-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-020-05463-z

Keywords

Navigation