Skip to main content

Advertisement

Log in

Ascorbic acid increases the activity and synthesis of tyrosinase in B16F10 cells through activation of p38 mitogen-activated protein kinase

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Ascorbic acid, a potential antioxidant, is known to inhibit melanogenesis. However, there are conflicting findings that ascorbic acid has very low stability and acts as a pro-oxidant, eventually increasing proliferation and melanin content in melanoma cells. In the present study, we explored the effects of ascorbic acid on the activity and expression of tyrosinase and melanin pigmentation in the presence and absence of α-melanocyte-stimulating hormone (α-MSH) using B16F10 melanoma cells. The mechanism by which ascorbic acid stimulated the expression of tyrosinase was also investigated. No inhibitory effect on melanin content was observed in ascorbic acid-treated cells, regardless of the presence of α-MSH. Ascorbic acid stimulated the activity and expression of tyrosinase and increased the expression of melanogenic regulatory factors, such as tyrosinase-related protein-1 (TRP-1), dihydroxyphenylalaminechrome tautomerase (TRP-2), and microphthalmia-associated transcription factor (MITF). Ascorbic acid also induced phosphorylation of p38 mitogen-activated protein kinase (MAPK). The inhibition of p38 MAPK pathway by SB203580 led to the suppression of tyrosinase, TRP-1, and TRP-2 expression in cells treated with ascorbic acid. Combined treatment with N-acetyl-l-cysteine and/or desferrioxamine mesylate attenuated the stimulating effect of ascorbic acid on tyrosinase activation in the cells. Collectively, ascorbic acid stimulates tyrosinase activity and expression in B16F10 cells via activation of p38 MAPK signaling and subsequent up-regulation of MITF, tyrosinase, and TRP expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aguirre R, May JM (2008) Inflammation in the vascular bed: importance of vitamin C. Pharmacol Ther 119(1):96–103

    Article  PubMed  CAS  Google Scholar 

  2. Ahn JH, Jin SH, Kang HY (2008) LPS induces melanogenesis through p38 MAPK activation in human melanocytes. Arch Dermatol Res 300(6):325–329

    Article  PubMed  CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–250

    Article  PubMed  CAS  Google Scholar 

  4. Buscà R, Ballotti R (2000) Cyclic AMP a key messenger in the regulation of skin pigmentation. Pig Cell Res 13(2):60–69

    Article  Google Scholar 

  5. Chang TS (2009) An updated review of tyrosinase inhibitors. Int J Mol Sci 10(6):2440–2475

    Article  PubMed  CAS  Google Scholar 

  6. Choi HI, Park JI, Kim HJ, Kim DW, Kim SS (2009) A novel l-ascorbic acid and peptide conjugate with increased stability and collagen biosynthesis. BMB Rep 42(11):743–746

    Article  PubMed  CAS  Google Scholar 

  7. Choi YK, Rho YK, Yoo KH, Lim YY, Li K, Kim BJ, Seo SJ, Kim MN, Hong CK, Kim DS (2010) Effects of vitamin C vs multivitamin on melanogenesis: comparative study in vitro and in vivo. Int J Dermatol 49(2):218–226

    Article  PubMed  CAS  Google Scholar 

  8. Englard S, Seifter S (1986) The biochemical functions of ascorbic acid. Annu Rev Nutr 6:365–406

    Article  PubMed  CAS  Google Scholar 

  9. Farahmand S, Taierzadeh H, Farboud ES (2006) Formulation and evaluation of a vitamin C multiple emulsion. Pharm Dev Technol 11(2):255–261

    Article  PubMed  CAS  Google Scholar 

  10. Fujiwara Y, Sahashi Y, Aritro M, Hasegawa S, Akimoto K, Ninomiya S, Sakaguchi Y, Seyama Y (2004) Effect of simultaneous administration of vitamin C, l-cysteine and vitamin E on the melanogenesis. Biofactors 21:415–418

    Article  PubMed  CAS  Google Scholar 

  11. Hearing VJ (2005) Biogenesis of pigment granules: a sensitive way to regulate melanocyte function. J Dermatol Sci 37(1):3–14

    Article  PubMed  CAS  Google Scholar 

  12. Hirata N, Naruto S, Ohguchi K, Akao Y, Nozawa Y, Iinuma M, Matsuda H (2007) Mechanism of the melanogenesis stimulation activity of (−)-cubebin in murine B16 melanoma cells. Bioorg Med Chem 15(14):4897–4902

    Article  PubMed  CAS  Google Scholar 

  13. Itoh K, Hirata N, Masuda M, Naruto S, Murata K, Wakabayashi K, Matsuda H (2009) Inhibitory effects of Citrus hassaku extract and its flavanone glycosides on melanogenesis. Biol Pharm Bull 32(3):410–415

    Article  PubMed  CAS  Google Scholar 

  14. Jiang Z, Xu J, Long M, Tu Z, Yang G, He G (2009) 2, 3, 5, 4′-tetrahydroxystilbene-2-O-beta-d-glucoside (THSG) induces melanogenesis in B16 cells by MAP kinase activation and tyrosinase upregulation. Life Sci 85(9–10):345–350

    Article  PubMed  CAS  Google Scholar 

  15. Jiménez-Cervantes C, Martínez-Esparza M, Pérez C, Daum N, Solano F, García-Borrón JC (2001) Inhibition of melanogenesis in response to oxidative stress: transient downregulation of melanocyte differentiation markers and possible involvement of microphthalmia transcription factor. J Cell Sci 114(Pt 12):2335–2344

    PubMed  Google Scholar 

  16. Kameyama K, Sakai C, Kondoh S, Yonemoto K, Nishiyama S, Tagawa M, Murata T, Ohnuma T, Quigley J, Dorsky A, Bucks D, Blanock K (1996) Inhibitory effect of magnesium l-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo. J Am Acad Dermatol 34(1):29–33

    Article  PubMed  CAS  Google Scholar 

  17. Kang JS, Cho D, Kim YI, Hahm E, Yang Y, Kim D, Hur D, Park H, Bang S, Hwang YI, Lee WJ (2003) l-Ascorbic acid (vitamin C) induces the apoptosis of B16 murine melanoma cells via a caspase-8-independent pathway. Cancer Immunol Immunother 52(11):693–698

    Article  PubMed  CAS  Google Scholar 

  18. Kim DS, Hwang ES, Lee JE, Kim SY, Kwon SB, Park KC (2003) Sphingosine-1-phosphate decreases melanin synthesis via sustained ERK activation and subsequent MITF degradation. J Cell Sci 116(Pt 9):1699–1706

    Article  PubMed  CAS  Google Scholar 

  19. Kim HJ, Cho YD, Leem KH, Lee DN, Kim EH, Kim MG, Kim DK, Shin TY, Boo Y, Lee JH, Kim HK (2006) Effects of ephedrae herba on melanogenesis and gene expression profiles using cDNA microarray in B16 melanocytes. Phytother Res 20(9):748–754

    Article  PubMed  CAS  Google Scholar 

  20. Kim KS, Kim JA, Eom SY, Lee SH, Min KR, Kim Y (2006) Inhibitory effect of piperlonguminine on melanin production in melanoma B16 cell line by downregulation of tyrosinase expression. Pigment Cell Res 19(1):90–98

    Article  PubMed  CAS  Google Scholar 

  21. Lee JC, Kim J, Park JK, Chung GH, Jang YS (2003) The antioxidant, rather than prooxidant, activities of quercetin on normal cells: quercetin protects mouse thymocytes from glucose oxidase-mediated apoptosis. Exp Cell Res 291:386–397

    Article  PubMed  CAS  Google Scholar 

  22. Matsuda S, Shibayama H, Hisama M, Ohtsuki M, Iwaki M (2008) Inhibitory effects of a novel ascorbic derivative, disodium isostearyl 2-O-l-ascorbyl phosphate on melanogenesis. Chem Pharm Bull (Tokyo) 56(3):292–297

    Article  CAS  Google Scholar 

  23. May JM (2000) How does ascorbic acid prevent endothelial dysfunction? Free Radic Biol Med 28(9):1421–1429

    Article  PubMed  CAS  Google Scholar 

  24. May JM (1999) Is ascorbic acid an antioxidant for the plasma membrane? FASEB J 13(9):995–1006

    PubMed  CAS  Google Scholar 

  25. Nusgens BV, Humbert P, Rougier A, Colige AC, Haftek M, Lambert CA, Richard A, Creidi P, Lapière CM (2001) Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol 116(6):853–859

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz JL (1996) The dual roles of nutrients as antioxidants and prooxidants: their effects on tumor cell growth. J Nutr 126(4 Suppl):1221S–1227S

    PubMed  CAS  Google Scholar 

  27. Seiberg M, Paine C, Sharlow E, Andrade-Gordon P, Costanzo M, Eisinger M, Shapiro SS (2000) Inhibition of melanosome transfer results in skin lightening. J Invest Dermatol 115(2):162–167

    Article  PubMed  CAS  Google Scholar 

  28. Shibahara S, Takeda K, Yasumoto K, Udono T, Watanabe K, Saito H, Takahashi K (2001) Microphthalmia-associated transcription factor (MITF): multiplicity in structure, function, and regulation. J Investig Dermatol Symp Proc 6(1):99–104

    Article  PubMed  CAS  Google Scholar 

  29. Shibayama H, Hisama M, Matsuda S, Kawase A, Ohtsuki M, Hanada K, Iwaki M (2008) Effect of a novel ascorbic derivative, disodium isostearyl 2-O-l-ascorbyl phosphate, on normal human dermal fibroblasts against reactive oxygen species. Biosci Biotech Biochem 72(4):1015–1022

    Article  CAS  Google Scholar 

  30. Shimada Y, Tai H, Tanaka A, Ikezawa-Suzuki I, Takagi K, Yoshida Y, Yoshie H (2009) Effects of ascorbic acid on gingival melanin pigmentation in vitro and in vivo. J Periodontol 80(2):317–323

    Article  PubMed  CAS  Google Scholar 

  31. Smit N, Vicanova J, Cramers P, Vrolijk H, Pavel S (2004) The combined effects of extracts containing carotenoids and vitamins E and C on growth and pigmentation of cultured human melanocytes. Skin Pharmacol Physiol 17(5):238–245

    Article  PubMed  CAS  Google Scholar 

  32. Varadharaj S, Watkins T, Cardounel AJ, Garcia JG, Zweier JL, Kuppusamy P, Natarajan V, Parinandi NL (2005) Vitamin C-induced loss of redox-dependent viability in lung microvascular endothelial cells. Antioxid Redox Signal 7(1–2):287–300

    Article  PubMed  CAS  Google Scholar 

  33. Widlund HR, Fisher DE (2003) Microphthalmia-associated transcription factor: a critical regulator of pigment cell development and survival. Oncogene 22(20):3035–3041

    Article  PubMed  CAS  Google Scholar 

  34. Yamaguchi Y, Hearing VJ (2009) Physiological factors that regulate skin pigmentation. Biofactors 35(2):193–199

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the RDA, Ministry of Agriculture and Forestry, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Chae Lee.

Additional information

S.-A. Lee and Y.-O. Son contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, SA., Son, YO., Kook, SH. et al. Ascorbic acid increases the activity and synthesis of tyrosinase in B16F10 cells through activation of p38 mitogen-activated protein kinase. Arch Dermatol Res 303, 669–678 (2011). https://doi.org/10.1007/s00403-011-1158-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-011-1158-4

Keywords

Navigation