Skip to main content

Advertisement

Log in

Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

The migration and proliferation of keratinocytes is critical to wound re-epithelialization and defects in this function are associated with the clinical phenomenon of chronic non-healing wounds. Advanced glycation end products (AGEs) occur through non-enzymatic glycation of long-lived proteins in diabetes and play important roles in diabetic complications. However, specific roles for AGEs in keratinocyte migration and proliferation, and the underlying molecular mechanisms, have not been fully established. The aim of the current study was to elucidate the interaction between AGE-modified bovine serum albumin (AGE-BSA) and keratinocytes. As a result, we found that AGE-BSA had no effect on the viability of keratinocytes for up to 48 h of incubation with 50 μg/ml of AGE-BSA. AGE-BSA (but not non-glycated BSA) exerted a concentration-dependent suppression of keratinocyte migration at a range of concentrations. The expression of matrix metalloproteinase-9 (MMP-9) was significantly up-regulated in keratinocytes incubated with increasing AGE-BSA, but tissue inhibitor of metalloproteinases-1 (TIMP-1) expression was down-regulated. AGE-BSA also profoundly depressed phospho-focal adhesion kinase-Tyr397 (p-FAK) and α2β1 integrin expression, while total-FAK expression levels remained constant, in keratinocytes. The proliferative capacity of keratinocytes was diminished after 72 h AGE-BSA incubation. Taken together, these findings suggested that in the presence of AGE-BSA, keratinocytes lose their migratory and proliferation abilities. These data also indicated that, in the context of the chronic hyperglycemia in diabetes, the effects of AGE-BSA on keratinocyte migration might be mediated through MMP-9/TIMP-1, p-FAK and α2β1 integrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhagavathula N, Nerusu KC, Lal A et al (2004) Rosiglitazone inhibits proliferation, motility, and matrix metalloproteinase production in keratinocytes. J Invest Dermatol 122:130–139

    Article  PubMed  CAS  Google Scholar 

  2. Boulton AJ, Vileikyte L, Ragnarson-Tennvall G et al (2005) The global burden of diabetic foot disease. Lancet 366:1719–1724

    Article  PubMed  Google Scholar 

  3. Brem H, Sheehan P, Boulton AJ (2004) Protocol for treatment of diabetic foot ulcers. Am J Surg 187:1S–10S

    Article  PubMed  Google Scholar 

  4. Chebassier N, El Houssein O, Viegas I et al (2004) In vitro induction of matrix metalloproteinase-2 and matrix metalloproteinase-9 expression in keratinocytes by boron and manganese. Exp Dermatol 13:484–490

    Article  PubMed  CAS  Google Scholar 

  5. Chen Q, Dong L, Wang L et al (2009) Advanced glycation end products impair function of late endothelial progenitor cells through effects on protein kinase akt and cyclooxygenase-2. Biochem Biophys Res Commun 381:192–197

    Article  PubMed  CAS  Google Scholar 

  6. Falanga V (2005) Wound healing and its impairment in the diabetic foot. Lancet 366:1736–1743

    Article  PubMed  Google Scholar 

  7. Gawlowski T, Stratmann B, Stirban AO et al (2007) Ages and methylglyoxal induce apoptosis and expression of mac-1 on neutrophils resulting in platelet-neutrophil aggregation. Thromb Res 121:117–126

    Article  PubMed  CAS  Google Scholar 

  8. Golubovskaya VM, Kweh FA, Cance WG (2009) Focal adhesion kinase and cancer. Histol Histopathol 24:503–510

    PubMed  CAS  Google Scholar 

  9. Hattori N, Mochizuki S, Kishi K et al (2009) Mmp-13 plays a role in keratinocyte migration, angiogenesis, and contraction in mouse skin wound healing. Am J Pathol 175:533–546

    Article  PubMed  CAS  Google Scholar 

  10. Jeffcoate W, Bakker K (2005) World diabetes day: footing the bill. Lancet 365:1527

    Article  PubMed  Google Scholar 

  11. Kim LT, Wu J, Bier-Laning C et al (2000) Focal adhesion kinase up-regulation and signaling in activated keratinocytes. J Surg Res 91:65–69

    Article  PubMed  CAS  Google Scholar 

  12. Kyriakides TR, Wulsin D, Skokos EA et al (2009) Mice that lack matrix metalloproteinase-9 display delayed wound healing associated with delayed reepithelization and disordered collagen fibrillogenesis. Matrix Biol 28:65–73

    Article  PubMed  CAS  Google Scholar 

  13. Li J, Chen J, Kirsner R (2007) Pathophysiology of acute wound healing. Clin Dermatol 25:9–18

    Article  PubMed  CAS  Google Scholar 

  14. Liu Y, Liang C, Liu X et al (2010) Ages increased migration and inflammatory responses of adventitial fibroblasts via rage, mapk and nf-kappab pathways. Atherosclerosis 208:34–42

    Article  PubMed  CAS  Google Scholar 

  15. Lobmann R, Schultz G, Lehnert H (2005) Proteases and the diabetic foot syndrome: mechanisms and therapeutic implications. Diabetes Care 28:461–471

    Article  PubMed  CAS  Google Scholar 

  16. Lohwasser C, Neureiter D, Weigle B et al (2006) The receptor for advanced glycation end products is highly expressed in the skin and upregulated by advanced glycation end products and tumor necrosis factor-alpha. J Invest Dermatol 126:291–299

    Article  PubMed  CAS  Google Scholar 

  17. Mirastschijski U, Schnabel R, Claes J et al (2010) Matrix metalloproteinase inhibition delays wound healing and blocks the latent transforming growth factor-β1-promoted myofibroblast formation and function. Wound Repair Regen 18:223–234

    Article  PubMed  Google Scholar 

  18. Morita K, Urabe K, Moroi Y et al (2005) Migration of keratinocytes is impaired on glycated collagen I. Wound Repair Regen 13:93–101

    Article  PubMed  Google Scholar 

  19. Nah SS, Choi IY, Yoo B et al (2007) Advanced glycation end products increases matrix metalloproteinase-1, -3, and -13, and tnf-alpha in human osteoarthritic chondrocytes. FEBS Lett 581:1928–1932

    Article  PubMed  CAS  Google Scholar 

  20. Navaratna D, McGuire PG, Menicucci G et al (2007) Proteolytic degradation of ve-cadherin alters the blood-retinal barrier in diabetes. Diabetes 56:2380–2387

    Article  PubMed  CAS  Google Scholar 

  21. O’Toole EA (2001) Extracellular matrix and keratinocyte migration. Clin Exp Dermatol 26:525–530

    Article  PubMed  Google Scholar 

  22. O’Toole EA, van Koningsveld R, Chen M et al (2008) Hypoxia induces epidermal keratinocyte matrix metalloproteinase-9 secretion via the protein kinase c pathway. J Cell Physiol 214:47–55

    Article  PubMed  Google Scholar 

  23. Peppa M, Brem H, Ehrlich P et al (2003) Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice. Diabetes 52:2805–2813

    Article  PubMed  CAS  Google Scholar 

  24. Raja, Sivamani K, Garcia MS et al. (2007) Wound re-epithelialization: Modulating keratinocyte migration in wound healing. Front Biosci 12:2849–2868

  25. Reiss MJ, Han YP, Garcia E et al (2010) Matrix metalloproteinase-9 delays wound healing in a murine wound model. Surgery 147:295–302

    Article  PubMed  Google Scholar 

  26. Santoro MM, Gaudino G (2005) Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res 304:274–286

    Article  PubMed  CAS  Google Scholar 

  27. Scott KA, Arnott CH, Robinson SC et al (2004) Tnf-alpha regulates epithelial expression of mmp-9 and integrin alphavbeta6 during tumour promotion. A role for tnf-alpha in keratinocyte migration? Oncogene 23:6954–6966

    Article  PubMed  CAS  Google Scholar 

  28. Sieg DJ, Hauck CR, Schlaepfer DD (1999) Required role of focal adhesion kinase (fak) for integrin-stimulated cell migration. J Cell Sci 112(Pt 16):2677–2691

    PubMed  CAS  Google Scholar 

  29. Singh N, Armstrong DG, Lipsky BA (2005) Preventing foot ulcers in patients with diabetes. JAMA 293:217–228

    Article  PubMed  CAS  Google Scholar 

  30. Singh R, Barden A, Mori T et al (2001) Advanced glycation end-products: a review. Diabetologia 44:129–146

    Article  PubMed  CAS  Google Scholar 

  31. Sohn H, Kim YS, Kim HT et al (2006) Ganglioside gm3 is involved in neuronal cell death. FASEB J 20:1248–1250

    Article  PubMed  CAS  Google Scholar 

  32. Teixeira AS, Caliari MV, Rocha OA et al (1999) Aminoguanidine prevents impaired healing and deficient angiogenesis in diabetic rats. Inflammation 23:569–581

    Article  PubMed  CAS  Google Scholar 

  33. Thompson CC, Ashcroft FJ, Patel S et al (2007) Pancreatic cancer cells overexpress gelsolin family capping proteins, which contribute to their cell motility. Gut 56:95–106

    Article  PubMed  CAS  Google Scholar 

  34. Thornalley PJ (1998) Cell activation by glycated proteins. Age receptors, receptor recognition factors and functional classification of ages. Cell Mol Biol (Noisy-le-grand) 44:1013–1023

    CAS  Google Scholar 

  35. Tokumaru S, Sayama K, Shirakata Y et al (2005) Induction of keratinocyte migration via transactivation of the epidermal growth factor receptor by the antimicrobial peptide ll-37. J Immunol 175:4662–4668

    PubMed  CAS  Google Scholar 

  36. Valencia JV, Weldon SC, Quinn D et al (2004) Advanced glycation end product ligands for the receptor for advanced glycation end products: biochemical characterization and formation kinetics. Anal Biochem 324:68–78

    Article  PubMed  CAS  Google Scholar 

  37. Watson A, Morris VL, Chan BM (2009) Coordinated integrin and growth factor regulation of primary keratinocyte migration mediated through extracellular signal regulated kinase and phosphoinositide 3-kinase. Arch Dermatol Res 301:307–317

    Article  PubMed  CAS  Google Scholar 

  38. Werner S, Grose R (2003) Regulation of wound healing by growth factors and cytokines. Physiol Rev 83:835–870

    PubMed  CAS  Google Scholar 

  39. Xu H, Shen J, Liu H et al (2006) Morroniside and loganin extracted from cornus officinalis have protective effects on rat mesangial cell proliferation exposed to advanced glycation end products by preventing oxidative stress. Can J Physiol Pharmacol 84:1267–1273

    Article  PubMed  CAS  Google Scholar 

  40. Yang C, Zhu P, Yan L et al (2009) Dynamic changes in matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 levels during wound healing in diabetic rats. J Am Podiatr Med Assoc 99:489–496

    PubMed  Google Scholar 

  41. Yang W, Lu J, Weng J et al (2010) Prevalence of diabetes among men and women in china. N Engl J Med 362:1090–1101

    Article  PubMed  CAS  Google Scholar 

  42. Yoon SJ, Yoon YW, Lee BK et al (2009) Potential role of hmg coa reductase inhibitor on oxidative stress induced by advanced glycation endproducts in vascular smooth muscle cells of diabetic vasculopathy. Exp Mol Med 41:802–811

    Article  PubMed  CAS  Google Scholar 

  43. Yurko MA, O’Toole EA, Woodley DT (2001) Phosphorylation of focal adhesion kinase [pp125(fak)] is increased in human keratinocytes induced to migrate by extracellular matrices. J Cell Physiol 188:24–32

    Article  PubMed  CAS  Google Scholar 

  44. Zhang F, Kent KC, Yamanouchi D et al (2009) Anti-receptor for advanced glycation end products therapies as novel treatment for abdominal aortic aneurysm. Ann Surg 250:416–423

    PubMed  Google Scholar 

  45. Zhang ZG, Bothe I, Hirche F et al (2006) Interactions of primary fibroblasts and keratinocytes with extracellular matrix proteins: Contribution of α2β1 integrin. J Cell Sci 119:1886–1895

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation of China (Grant No. 81070660) and the Science and Technology Foundation of Guangdong province (Grant No. 0321). We are grateful to Shao-ling Zhang for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, P., Yang, C., Chen, LH. et al. Impairment of human keratinocyte mobility and proliferation by advanced glycation end products-modified BSA. Arch Dermatol Res 303, 339–350 (2011). https://doi.org/10.1007/s00403-010-1102-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1102-z

Keywords

Navigation