Skip to main content

Advertisement

Log in

Increased expression of fibroblast activation protein-alpha in keloid fibroblasts: implications for development of a novel treatment option

  • Original Paper
  • Published:
Archives of Dermatological Research Aims and scope Submit manuscript

Abstract

Keloid scars are common benign fibroproliferative reticular dermal lesions with unknown etiology and ill-defined management with high rate of recurrence post surgery. The progression of keloids is characterized by increased deposition of extracellular matrix proteins, invasion into the surrounding healthy skin and inflammation. Fibroblasts are considered to be the key cellular mediators of fibrogenesis in keloid scars. Fibroblast activation protein alpha (FAP-α) and dipeptidyl peptidase IV (DPPIV) are proteases located at the plasma membrane promoting cell invasiveness and tumor growth and have been previously associated with keloid scars. Therefore, in this study we analyzed in further detail the expression of FAP-α in keloid fibroblasts compared to control skin fibroblasts. Dermal fibroblasts were obtained from punch-biopsies from the active margin of four keloids and four control skin samples. Flow cytometry was used to analyze FAP-α expression and the CytoSelect® 24-Well Collagen I Cell Invasion Assay was applied to study fibroblast invasion. Secretion of extracellular matrix (ECM) proteins was investigated by multiplexed particle-based flow cytometric assay and enzyme-linked immunosorbent assay. We found an increased expression of FAP-α in keloid fibroblasts compared to control skin fibroblasts (p < 0.001). Inhibition of FAP-α/DPPIV activity using the irreversible inhibitor H2N-Gly-Pro diphenylphosphonate reduced the increased invasiveness of keloid fibroblasts (p < 0.001) indicating that keloid invasion may be partly FAP-α/DPPIV mediated. FAP-α/DPPIV inhibition had no effect, (a) on the synthesis of the ECM proteins procollagen type I C-terminal peptide and fibronectin, (b) on the production of fibroblast growth factor or vascular endothelial growth factor, (c) on the expression of the proinflammatory cytokines interleukin-6 (IL-6), interleukin 8 (IL-8) or monocyte chemotactic protein-1. These results suggest a potential role for FAP-α and DPPIV in the invasive behavior of keloids. FAP-α and DPPIV may increase the invasive capacity of keloid fibroblasts rather than by modulating inflammation or ECM production. Since FAP-α expression is restricted to reactive fibroblasts in wound healing and normal adult tissues are generally FAP-α negative, inhibiting FAP-α/DPPIV activity may be a novel treatment option to prevent keloid progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abergel RP, Pizzurro D, Meeker CA, Lask G, Matsuoka LY, Minor RR, Chu ML, Uitto J (1985) Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. J Invest Dermatol 84:384–390

    Article  CAS  PubMed  Google Scholar 

  2. Babu M, Diegelmann R, Oliver N (1989) Fibronectin is overproduced by keloid fibroblasts during abnormal wound healing. Mol Cell Biol 9:1642–1650

    CAS  PubMed  Google Scholar 

  3. Bock O, Schmid-Ott G, Malewski P, Mrowietz U (2006) Quality of life of patients with keloid and hypertrophic scarring. Arch Dermatol Res 297:433–438

    Article  PubMed  Google Scholar 

  4. Durani P, Bayat A (2008) Levels of evidence for the treatment of keloid disease. J Plast Reconstr Aesthet Surg 61:4–17

    Article  CAS  PubMed  Google Scholar 

  5. Garin-Chesa P, Old LJ, Rettig WJ (1990) Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 87:7235–7239

    Article  CAS  PubMed  Google Scholar 

  6. Ghazizadeh M, Tosa M, Shimizu H, Hyakusoku H, Kawanami O (2007) Functional implications of the IL-6 signaling pathway in keloid pathogenesis. J Invest Dermatol 127:98–105

    Article  CAS  PubMed  Google Scholar 

  7. Ghersi G, Zhao Q, Salamone M, Yeh Y, Zucker S, Chen WT (2006) The protease complex consisting of dipeptidyl peptidase IV and seprase plays a role in the migration and invasion of human endothelial cells in collagenous matrices. Cancer Res 66:4652–4661

    Article  CAS  PubMed  Google Scholar 

  8. Gilmore BF, Lynas JF, Scott CJ, McGoohan C, Martin L, Walker B (2006) Dipeptide proline diphenyl phosphonates are potent, irreversible inhibitors of seprase (FAPalpha). Biochem Biophys Res Commun 346:436–446

    Article  CAS  PubMed  Google Scholar 

  9. Gorrell MD (2005) Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond) 108:277–292

    Article  CAS  Google Scholar 

  10. Gragnani A, Warde M, Furtado F, Ferreira LM (2010) Topical tamoxifen therapy in hypertrophic scars or keloids in burns. Arch Dermatol Res 302:1–4

    Article  CAS  PubMed  Google Scholar 

  11. Hsu YC, Chen MJ, Yu YM, Ko SY, Chang CC (2010) Suppression of TGF-beta1/SMAD pathway and extracellular matrix production in primary keloid fibroblasts by curcuminoids: its potential therapeutic use in the chemoprevention of keloid. Arch Dermatol Res [Epub ahead of print]

  12. Imaizumi R, Akasaka Y, Inomata N, Okada E, Ito K, Ishikawa Y, Maruyama Y (2009) Promoted activation of matrix metalloproteinase (MMP)-2 in keloid fibroblasts and increased expression of MMP-2 in collagen bundle regions: implications for mechanisms of keloid progression. Histopathology 54:722–730

    Article  PubMed  Google Scholar 

  13. Kischer CW, Wagner HN Jr, Pindur J, Holubec H, Jones M, Ulreich JB, Scuderi P (1989) Increased fibronectin production by cell lines from hypertrophic scar and keloid. Connect Tissue Res 23:279–288

    Article  CAS  PubMed  Google Scholar 

  14. Le AD, Zhang Q, Wu Y, Messadi DV, Akhondzadeh A, Nguyen AL, Aghaloo TL, Kelly AP, Bertolami CN (2004) Elevated vascular endothelial growth factor in keloids: relevance to tissue fibrosis. Cells Tissues Organs 176:87–94

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Fassnacht M, Nair S, Boczkowski D, Gilboa E (2005) Tumor immunotherapy targeting fibroblast activation protein, a product expressed in tumor-associated fibroblasts. Cancer Res 65:11156–11163

    Article  CAS  PubMed  Google Scholar 

  16. Liao WT, Yu HS, Arbiser JL, Hong CH, Govindarajan B, Chai CY, Shan WJ, Lin YF, Chen GS, Lee CH (2010) Enhanced MCP-1 release by keloid CD14+ cells augments fibroblast proliferation: role of MCP-1 and Akt pathway in keloids. Exp Dermatol 19(8):e142–e150

    Google Scholar 

  17. Lim CP, Phan TT, Lim IJ, Cao X (2009) Cytokine profiling and Stat3 phosphorylation in epithelial-mesenchymal interactions between keloid keratinocytes and fibroblasts. J Invest Dermatol 129:851–861

    Article  CAS  PubMed  Google Scholar 

  18. Lu F, Gao J, Ogawa R, Hyakusoku H, Ou C (2007) Biological differences between fibroblasts derived from peripheral and central areas of keloid tissues. Plast Reconstr Surg 120:625–630

    Article  CAS  PubMed  Google Scholar 

  19. Marneros AG, Krieg T (2004) Keloids—clinical diagnosis, pathogenesis, and treatment options. J Dtsch Dermatol Ges 2:905–913

    Article  PubMed  Google Scholar 

  20. Marneros AG, Norris JE, Watanabe S, Reichenberger E, Olsen BR (2004) Genome scans provide evidence for keloid susceptibility loci on chromosomes 2q23 and 7p11. J Invest Dermatol 122:1126–1132

    Article  CAS  PubMed  Google Scholar 

  21. Monsky WL, Lin CY, Aoyama A, Kelly T, Akiyama SK, Mueller SC, Chen WT (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res 54:5702–5710

    CAS  PubMed  Google Scholar 

  22. Murray JC (1994) Keloids and hypertrophic scars. Clin Dermatol 12:27–37

    Article  CAS  PubMed  Google Scholar 

  23. Nassiri M, Woolery-Lloyd H, Ramos S, Jacob SE, Gugic D, Viciana A, Romanelli P, Elgart G, Berman B, Vincek V (2009) Gene expression profiling reveals alteration of caspase 6 and 14 transcripts in normal skin of keloid-prone patients. Arch Dermatol Res 301:183–188

    Article  CAS  PubMed  Google Scholar 

  24. O’Brien P, O’Connor BF (2008) Seprase: an overview of an important matrix serine protease. Biochim Biophys Acta 1784:1130–1145

    PubMed  Google Scholar 

  25. Ohtsuru A, Yoshimoto H, Ishihara H, Namba H, Yamashita S (2000) Insulin-like growth factor-I (IGF-I)/IGF-I receptor axis and increased invasion activity of fibroblasts in keloid. Endocr J 47(Suppl):S41–S44

    Article  CAS  PubMed  Google Scholar 

  26. Park JE, Lenter MC, Zimmermann RN, Garin-Chesa P, Old LJ, Rettig WJ (1999) Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J Biol Chem 274:36505–36512

    Article  CAS  PubMed  Google Scholar 

  27. Pitche P (2006) What is true in “spontaneous” keloids? Ann Dermatol Venereol 133:501

    CAS  PubMed  Google Scholar 

  28. Reinhold D, Kahne T, Steinbrecher A, Wrenger S, Neubert K, Ansorge S, Brocke S (2002) The role of dipeptidyl peptidase IV (DP IV) enzymatic activity in T cell-activation and autoimmunity. Biol Chem 383:1133–1138

    Article  CAS  PubMed  Google Scholar 

  29. Rettig WJ, Garin-Chesa P, Healey JH, Su SL, Ozer HL, Schwab M, Albino AP, Old LJ (1993) Regulation and heteromeric structure of the fibroblast activation protein in normal and transformed cells of mesenchymal and neuroectodermal origin. Cancer Res 53:3327–3335

    CAS  PubMed  Google Scholar 

  30. Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, Old LJ, Rettig WJ (1994) Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci USA 91:5657–5661

    Article  CAS  PubMed  Google Scholar 

  31. Seifert O, Bayat A, Geffers R, Dienus K, Buer J, Lofgren S, Matussek A (2008) Identification of unique gene expression patterns within different lesional sites of keloids. Wound Repair Regen 16:254–265

    Article  PubMed  Google Scholar 

  32. Seifert O, Mrowietz U (2009) Keloid scarring: bench and bedside. Arch Dermatol Res 301:259–272

    Article  PubMed  Google Scholar 

  33. Shih B, Bayat A (2010) Genetics of keloid scarring. Arch Dermatol Res 302:319–339

    Article  CAS  PubMed  Google Scholar 

  34. Tan EM, Hoffren J, Rouda S, Greenbaum S, Fox JW 4th, Moore JH Jr, Dodge GR (1993) Decorin, versican, and biglycan gene expression by keloid and normal dermal fibroblasts: differential regulation by basic fibroblast growth factor. Exp Cell Res 209:200–207

    Article  CAS  PubMed  Google Scholar 

  35. Tan EM, Rouda S, Greenbaum SS, Moore JH Jr, Fox JW 4th, Sollberg S (1993) Acidic and basic fibroblast growth factors down-regulate collagen gene expression in keloid fibroblasts. Am J Pathol 142:463–470

    CAS  PubMed  Google Scholar 

  36. Tan KT, Shah N, Pritchard SA, McGrouther DA, Bayat A (2010) The influence of surgical excision margins on keloid prognosis. Ann Plast Surg 64:55–58

    Article  CAS  PubMed  Google Scholar 

  37. Thielitz A, Vetter RW, Schultze B, Wrenger S, Simeoni L, Ansorge S, Neubert K, Faust J, Lindenlaub P, Gollnick HP, Reinhold D (2008) Inhibitors of dipeptidyl peptidase IV-like activity mediate antifibrotic effects in normal and keloid-derived skin fibroblasts. J Invest Dermatol 128:855–866

    Article  CAS  PubMed  Google Scholar 

  38. Tuan TL, Nichter LS (1998) The molecular basis of keloid and hypertrophic scar formation. Mol Med Today 4:19–24

    Article  CAS  PubMed  Google Scholar 

  39. Uitto J, Perejda AJ, Abergel RP, Chu ML, Ramirez F (1985) Altered steady-state ratio of type I/III procollagen mRNAs correlates with selectively increased type I procollagen biosynthesis in cultured keloid fibroblasts. Proc Natl Acad Sci USA 82:5935–5939

    Article  CAS  PubMed  Google Scholar 

  40. Vignali DA (2000) Multiplexed particle-based flow cytometric assays. J Immunol Methods 243:243–255

    Article  CAS  PubMed  Google Scholar 

  41. Zhang GY, Yi CG, Li X, Zheng Y, Niu ZG, Xia W, Meng Z, Meng CY, Guo SZ (2008) Inhibition of vascular endothelial growth factor expression in keloid fibroblasts by vector-mediated vascular endothelial growth factor shRNA: a therapeutic potential strategy for keloid. Arch Dermatol Res 300:177–184

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Edvard Welander Foundation, Finsen Foundation, from the Medical Research Council of Southeast Sweden (FORSS) and from the Olle Enkvist Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Seifert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dienus, K., Bayat, A., Gilmore, B.F. et al. Increased expression of fibroblast activation protein-alpha in keloid fibroblasts: implications for development of a novel treatment option. Arch Dermatol Res 302, 725–731 (2010). https://doi.org/10.1007/s00403-010-1084-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00403-010-1084-x

Keywords

Navigation