Skip to main content

Advertisement

Log in

High-stress distribution in the lateral region of the subtalar joint in the patient with chronic lateral ankle instability

  • Arthroscopy and Sports Medicine
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

Chronic lateral ankle instability (CLAI) is associated with osteoarthritis (OA). However, the characteristics of patients with CLAI who progress to OA are not clear. Measurement of Hounsfield Unit (HU) value on computed tomography (CT) is reported to be useful to evaluate the stress distribution. We aimed to evaluate the stress distribution in the ankle and subtalar joints and factors enhancing it in patients with CLAI.

Materials and methods

Thirty-three ankles with CLAI (CLAI group) and 26 ankles without CLAI (control group) were included. A mean age of CLAI was 35.2 years and control was 30.3 years. Color map was created in the ankle and subtalar joint according to the HU values using three-dimensional CT to identify the region with high HU values, and HU values in those regions were measured using two-dimensional CT and compared between control and CLAI groups. In CLAI group, the relationships between HU values and ankle activity score (AAS), OA, talar tilting angle (TTA), cartilage injury were assessed.

Results

The HU values in the anteromedial region of the talus and lateral region in the subtalar joint were higher than those in the control. In CLAI, patients with an AAS of ≧ 6, over 10° of TTA, cartilage injury, and OA changes in the medial gutter had significantly higher HU values in the lateral region of the subtalar joint than those with an AAS of ≦5, less than 10° of TTA without cartilage injury and OA change.

Conclusions

CLAI patients, especially in the patients with high activity level, large TTA, cartilage injury, and OA changes at the medial gutter, have high HU values in the lateral region of the subtalar joint, which suggests that disruption of the subtalar compensation toward OA will occur. For these patients, instability should be completely eliminated to prevent ankle OA.

Level of evidence

Level III, comparative series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Valderrabano V, Hintermann B, Horisberger M, Fung TS (2006) Ligamentous posttraumatic ankle osteoarthritis. Am J Sports Med 34:612–620. https://doi.org/10.1177/0363546505281813

    Article  PubMed  Google Scholar 

  2. van Rijn RM, van Os AG, Bernsen RM, Luijsterburg PA, Koes BW, Bierma-Zeinstra SMA (2008) What is the clinical course of acute ankle sprains? A systemic literature review. Am J Med 121(4):324–331. https://doi.org/10.1016/j.amjmed.2007.11.018 (e6)

    Article  PubMed  Google Scholar 

  3. Vega J, Malagelada F, Céspedes MCM, Dalmau-Pastor M (2020) The lateral fibulotalocalcaneal ligament complex: an ankle stabilizing isometric structure. Knee Surg Sports Traumatol Arthrosc 28:8–17. https://doi.org/10.1007/s00167-018-5188-8

    Article  PubMed  Google Scholar 

  4. Hayashi K, Tanaka Y, Kumai T, Sugimoto K, Takakura Y (2008) Correlation of compensatory alignment of the subtalar joint to the progression of primary osteoarthritis of the ankle. Foot Ankle Int 29(4):400–406. https://doi.org/10.3113/FAI.2008.0400

    Article  PubMed  Google Scholar 

  5. Bolus D, Morgan D, Berland L (2017) Effective use of the Hounsfield unit in the age of variable energy CT. Abdom Radiol 42:766–771. https://doi.org/10.1007/s00261-017-1052-4

    Article  Google Scholar 

  6. Hounsfield GN (1980) Computed medical imaging. Novel lecture, December 8, 1979. J Comput Assist Tomogr 4(5):655–674. https://doi.org/10.1097/00004728-198010000-00017

    Article  Google Scholar 

  7. Ai HA, Meier JG, Wendt RE (2018) HU deviation in lung and bone tissues: characterization and a corrective strategy. Med Phys 45(5):2108–2118. https://doi.org/10.1002/mp.12871

    Article  PubMed  Google Scholar 

  8. Harada Y, Yokoya S, Akiyama Y, Mochizuki Y, Ochi M, Adachi N (2018) Bone mineralization changes of the glenoid in shoulders with symptomatic rotator cuff tear. Int Orthop 42:2639–2644. https://doi.org/10.1007/s00264-018-4004-x

    Article  PubMed  Google Scholar 

  9. Nakasa T, Ikuta Y, Ota Y, Kanemitsu M, Sumii J, Nekomoto A, Adachi N (2020) Bone mineralization changes in the subchondral bone of the medial gutter in chronic lateral ankle instability. Foot Ankle Int 41(11):1419–1426. https://doi.org/10.1177/1071100720938049

    Article  PubMed  Google Scholar 

  10. Spruit M, Meijers H, Obradiv M, Anderson PG (2004) CT density measurement of bone graft within an intervertebral lumber cage: increase of Hounsfield units as an indicator for increasing bone mineral contents. J Spinal Disord Tech 17(3):232–235. https://doi.org/10.1097/00024720-200406000-00011

    Article  CAS  PubMed  Google Scholar 

  11. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18:419–433. https://doi.org/10.1007/s00167-010-1054-z

    Article  PubMed  Google Scholar 

  12. Klaus VB, Kilfoil TM, Hash TWII, McDaniel G, Renner JB, Carrino JA, Adams S (2015) Atlas of radiographic features of osteoarthritis of the ankle and hindfoot. Osteoarthr Cartil 23(12):2059–2085. https://doi.org/10.1016/j.joca.2015.08.008

    Article  Google Scholar 

  13. Brittberg M, Winalski CS (2003) Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 85A:58–69. https://doi.org/10.2106/00004623-200300002-00008

    Article  Google Scholar 

  14. Nakasa T, Ikuta Y, Kanemitsu M, Sumii J, Nekomoto A, Adachi N (2021) Safe angles of ATFL and CFL anchor insertion into anatomical attachment of fibula in a lateral ankle ligament repair. J Orthop Sci 26(1):156–161. https://doi.org/10.1016/j.jos.2020.02.011

    Article  PubMed  Google Scholar 

  15. Halasi T, Kynsburg Á, Tálly A, Befkes I (2004) Development of a new activity score for the evaluation of ankle instability. Am J Sports Med 32(4):899–908. https://doi.org/10.1177/0363546503262181

    Article  PubMed  Google Scholar 

  16. Kjaergaard-Anderson P, Wethelund JO, Nielsen S (1987) Lateral talocalcaneal instability following section of the calcaneofibular ligament: a kinesiologic study. Foot Ankle 7:355–361. https://doi.org/10.1177/107110078700700612

    Article  Google Scholar 

  17. Louwerens JWK, Ginai AZ, van Linge B, Snijders CJ (1995) Stress radiography of the talocrural and subtalar joints. Foot Ankle Int 16:148–155. https://doi.org/10.1177/107110079501600308

    Article  CAS  PubMed  Google Scholar 

  18. Kovaleski JE, Heitman RJ, Gurchiek LR, Hollis JM, Liu W, Pearsall AW 4th (2014) Joint stability characteristics of the ankle complex after lateral ligamentous injury, Part I: a laboratory comparison using arthroscopic measurement. J Athl Train 49:192–197. https://doi.org/10.4085/1062-6050-49.2.07

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stagni R, Leardini A, O’Connor JJ, Giannini S (2003) Role of passive structures in the mobility and stability of the human subtalar joint: a literature review. Foot Ankle Int 24(5):402–409. https://doi.org/10.1177/107110070302400505

    Article  PubMed  Google Scholar 

  20. Song K, Pietrosimone B, Tennant JN, Nissman DB, Dederer KM, Paranjape C, Wikstrom EA (2021) Talar and subtalar T1ρ relaxation times in limbs with and without chronic ankle instability. Cartilage. https://doi.org/10.1177/1947603521994626 (in press)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kim HS, Yoon YC, Sung KS, Kim MJ, Ahn S (2018) Comparison of T2 relaxation values in subtalar cartilage between patients with lateral instability of the ankle joint and healthy volunteers. Eur Radiol 28:4151–4162. https://doi.org/10.1007/s00330-018-5390-6

    Article  PubMed  Google Scholar 

  22. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504

    CAS  PubMed  Google Scholar 

  23. Nakasa T, Adachi N, Kato T, Ochi M (2014) Correlation between subchondral bone plate thickness and cartilage degeneration in osteoarthritis of the ankle. Foot Ankle Int 35(12):1341–1349. https://doi.org/10.1177/1071100714548061

    Article  PubMed  Google Scholar 

  24. Caputo AM, Lee JY, Spritzer CE, Easley ME, Deorio JK, Nunley JA 2nd, DeFrate LE (2009) In vivo kinematics if the tibiotalar joint after lateral ankle instability. Am J Sports Med 37:2241–2248. https://doi.org/10.1177/0363546509337578

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fukano M, Fukubayashi T, Kumai T (2020) In vivo talocrural and subtalar kinematics during the stance phase of walking in individuals with repetitive ankle sprains. J Biomech 101:109651. https://doi.org/10.1016/j.jbiomech.2020.109651

    Article  PubMed  Google Scholar 

  26. Takakura Y, Tanaka Y, Kumai T, Tamai S (1995) Low tibial osteotomy for osteoarthritis of the ankle: results of a new operation in 18 patients. J Bone Joint Surg Br 77:50–54

    Article  CAS  Google Scholar 

  27. Lee WC, Moon JS, Lee HS, Lee K (2011) Alignment of ankle and hindfoot in early stage ankle osteoarthritis. Foot Ankle Int 32:693–699. https://doi.org/10.3113/FAI.2011.0693

    Article  PubMed  Google Scholar 

  28. Ohneda Y, Matsuhara K, Takakura Y, Tamai S, Kawai T (1984) Analysis of stress distribution in the ankle joint using three dimensional rigid body spring model. Orthop Biomech 6:315–319. https://doi.org/10.1115/1.4033547

    Article  Google Scholar 

  29. Li Lu, Gollhofer A, Lohrer H, Dorn-Lange N, Bonsignore G, Gehring D (2019) Function of ankle ligaments for subtalar and talocrural joint stability during an inversion movement -an in vitro study. J Foot Ankle Res 12:16. https://doi.org/10.1186/s13047-019-0330-5

    Article  PubMed  PubMed Central  Google Scholar 

  30. Samejima Y, Inokuchi R, Iwashita K, Ikegami H, Musha Y, Jujo Y, Takao M (2021) Arthroscopic ankle lateral ligament repair alone versus arthroscopic ankle lateral ligament repair with reinforcement by inferior extensor retinaculum. Arch Orthop Trauma Surg 141(6):987–995. https://doi.org/10.1007/s00402-021-03771-w

    Article  PubMed  Google Scholar 

  31. Mederake M, Hofmann UK, Ipach I (2021) Arthroscopic modified Broström operation versus open reconstruction with local periosteal flap in chronic ankle instability. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03949-2

    Article  PubMed  Google Scholar 

  32. Ulucakoy C, Kaptan AY, Eren TK, Eren A, Olmez SB, Ataoglu MB, Kanatli U (2021) Is arthroscopic surgery as successful as open approach in the treatment of lateral ankle instability? Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-03799-y

    Article  PubMed  Google Scholar 

  33. Lee KT, Park YU, Kim JS, Kim JB, Kim KC, Kang SK (2011) Long-term results after modified Brostrom procedure without calcaneo-fibular ligament reconstruction. Foot Ankle Int 32(2):153–157. https://doi.org/10.3113/FAI.2011.0153

    Article  PubMed  Google Scholar 

  34. Maffulli N, Del Buono A, Maffulli GD, Oliva F, Testa V, Capasso G, Denaro V (2013) Isolated anterior talofibular ligament Brostom repair for chronic lateral ankle instability: 9-year follow-up. Am J Sports Med 41(4):858–864. https://doi.org/10.1177/0363546512474967

    Article  PubMed  Google Scholar 

  35. Cordier G, Nunes GA, Vega J, Roure F, Dalmau-Pastor M (2021) Connecting fibers between ATFL’s inferior fascicle and CFL transmit tension between both ligaments. Knee Surg Sports Traumatol Arthrosc. https://doi.org/10.1007/s00167-021-06496-w (ahead of print)

    Article  PubMed  Google Scholar 

  36. Nakasa T, Ikuta Y, Yoshikawa M, Sawa M, Tsuyuguchi Y, Adachi N (2018) Added value of preoperative computed tomography for determining cartilage degeneration in patients with osteochondral lesions of the talar dome. Am J Sports Med 46(1):208–216. https://doi.org/10.1177/0363546517732035

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.com) for English language editing.

Funding

No funds were received in support of this study.

Author information

Authors and Affiliations

Authors

Contributions

TN collected and analyzed the data and drafted the manuscript. YI, JS and AN collected and analyzed the data. NA gave final approval to the manuscript.

Corresponding author

Correspondence to Tomoyuki Nakasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the local ethics committee of our university.

Informed consent

Informed consent was obtained from all individual participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakasa, T., Ikuta, Y., Sumii, J. et al. High-stress distribution in the lateral region of the subtalar joint in the patient with chronic lateral ankle instability. Arch Orthop Trauma Surg 142, 1579–1587 (2022). https://doi.org/10.1007/s00402-021-04078-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04078-6

Keywords

Navigation