Skip to main content

Advertisement

Log in

Three-dimensional cortical and trabecular bone microstructure of the proximal ulna

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The three-dimensional (3D) microstructure of the cortical and trabecular bone of the proximal ulna has not yet been described by means of high-resolution 3D imaging. An improved characterization can provide a better understanding of their relative contribution to resist impact load. The aim of this study is to describe the proximal ulna bone microstructure using micro-computed tomography (micro-CT) and relate it to gross morphology and function.

Materials and methods

Five dry cadaveric human ulnae were scanned by micro-CT (17 μm/voxel, isotropic). Both qualitative and quantitative assessments were performed on sagittal image stacks. The cortical thickness of the trochlear notch and the trabecular bone microstructure were measured in the olecranon, bare area and coronoid.

Results

Groups of trabecular struts starting in the bare area, spanning towards the anterior and posterior side of the proximal ulna, were observed; within the coronoid, the trabeculae were orthogonal to the joint surface. Consistently among the ulnae, the coronoid showed the highest cortical thickness (1.66 ± 0.59 mm, p = 0.04) and the olecranon the lowest (0.33 ± 0.06 mm, p = 0.04). The bare area exhibited the highest bone volume fraction (BV/TV = 43.7 ± 22.4%), trabecular thickness (Tb.Th = 0.40 ± 0.09 mm) and lowest structure model index (SMI = – 0.28 ± 2.20, indicating plate-like structure), compared to the other regions (p = 0.04).

Conclusions

Our microstructural results suggest that the bare area is the region where most of the loading of the proximal ulna is concentrated, whereas the coronoid, together with its anteromedial facet, is the most important bony stabilizer of the elbow joint. Studying the proximal ulna bone microstructure helps understanding its possible everyday mechanical loading conditions and potential fractures.

Level of evidence

N.A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bain GI, MacLean SBM, McNaughton T, Williams R (2017) Microstructure of the distal radius and its relevance to distal radius fractures. J Wrist Surg 6(4):307–315. https://doi.org/10.1055/s-0037-1602849

    Article  Google Scholar 

  2. Low SC, Bain GI, Findlay DM, Eng K, Perilli E (2014) External and internal bone micro-architecture in normal and Kienböck’s lunates: A whole-bone micro-computed tomography study. J Orthop Res 32(6):826–833

    Article  Google Scholar 

  3. Martelli S, Perilli E (2018) Time-elapsed synchrotron-light microstructural imaging of femoral neck fracture. J Mech Behav Biomed Mater 84:265–272. https://doi.org/10.1016/j.jmbbm.2018.05.016

    Article  Google Scholar 

  4. Roberts BC, Thewlis D, Solomon LB, Mercer G, Reynolds KJ, Perilli E (2016) Systematic mapping of the subchondral bone 3D microarchitecture in the human tibial plateau: Variations with joint alignment. J Orthopaed Res. https://doi.org/10.1002/jor.23474

    Article  Google Scholar 

  5. Viveen J, Perilli E, Jaarsma RL, Doornberg JN, Eygengaal D, Bain GI (2020) Regional differences in the three-dimensional bone microstructure of the radial head: implications for observed fracture patterns. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-020-03665-3

    Article  Google Scholar 

  6. Zumstein MA, Raniga S, Labrinidis A, Eng K, Bain GI, Moor BK (2016) Optimal lateral row anchor positioning in posterior-superior transosseous equivalent rotator cuff repair: a micro-computed tomography study. Orthop J Sports Med 4(11):2325967116671305

    Article  Google Scholar 

  7. Engelke K, Libanati C, Liu Y, Wang H, Austin M, Fuerst T, Stampa B, Timm W, Genant HK (2009) Quantitative computed tomography (QCT) of the forearm using general purpose spiral whole-body CT scanners: accuracy, precision and comparison with dual-energy X-ray absorptiometry (DXA). Bone 45(1):110–118. https://doi.org/10.1016/j.bone.2009.03.669

    Article  Google Scholar 

  8. Ruff C, Holt B, Trinkaus E (2006) Who’s afraid of the big bad Wolff?:“Wolff’s law” and bone functional adaptation. Am J Phys Anthropol 129(4):484–498

    Article  Google Scholar 

  9. Jenkins RA (1973) The functional anatomy and evolution of the mammalian humero-ulnar articulation. Am J Anat 137:281–297

    Article  Google Scholar 

  10. Af Ekenstam FW, Palmer AK, Glisson RR (2009) The load on the radius and ulna in different positions of the wrist and forearm: A cadaver study. Acta Orthop Scand 55(3):363–365. https://doi.org/10.3109/17453678408992375

    Article  Google Scholar 

  11. Barco R, Sánchez P, Morrey ME, Morrey BF, Sánchez-Sotelo J (2017) The distal triceps tendon insertional anatomy—implications for surgery. JSES Open Access 1(2):98–103

    Article  Google Scholar 

  12. Cage D, Abrams RA, Callahan JJ, Botte MJ (1995) Soft tissue attachments of the ulnar coronoid process. An anatomic study with radiographic correlation. Clin Orthop Relat Res 320:154–158

    Google Scholar 

  13. De Lemos Weber MFV, Barbosa DM, Belentani C, Ramos PMN, Trudell D, Resnick D (2009) Coronoid process of the ulna: paleopathologic and anatomic study with imaging correlation. Emphasis on the anteromedial “facet”. Skeletal Radiol 38 (1):61–67

  14. Doornberg JN, de Jong IM, Lindenhovius AL, Ring D (2007) The anteromedial facet of the coronoid process of the ulna. J Shoulder Elbow Surg 16(5):667–670

    Article  Google Scholar 

  15. Fornalski S, Gupta R, Lee TQ (2003) Anatomy and biomechanics of the elbow joint. Sports Med Arthrosc Rev 11(1):1–9

    Article  Google Scholar 

  16. Morrey BF (2009) The elbow and its disorders. Elsevier Health Sciences

  17. Ring D (2006) Fractures of the coronoid process of the ulna. J Hand Surg 31(10):1679–1689

    Article  Google Scholar 

  18. Ring D, Doornberg JN (2007) Fracture of the anteromedial facet of the coronoid process. J Bone Joint Surg Am (2 suppl 2): 267–283

  19. Weber MF, Barbosa DM, Belentani C, Ramos PM, Trudell D, Resnick D (2009) Coronoid process of the ulna: paleopathologic and anatomic study with imaging correlation. Emphasis on the anteromedial "facet". Skeletal Radiol 38 (1):61–67. https://doi.org/10.1007/s00256-008-0556-y

  20. Zafiropoulos GT, Prasad KSRK (2017) Trabecular pattern of the proximal ulna: a morphological study. Should Elb 5(3):206–210. https://doi.org/10.1111/sae.12020

    Article  Google Scholar 

  21. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P (1999) Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167–1174. https://doi.org/10.1359/jbmr.1999.14.7.1167

    Article  CAS  Google Scholar 

  22. Perilli E, Parkinson IH, Reynolds KJ (2012) Micro-CT examination of human bone: from biopsies towards the entire organ. Ann Ist Super Sanita 48(1):75–82

    Google Scholar 

  23. Perilli E, Bala Y, Zebaze R, Reynolds KJ, Seeman E (2015) Regional heterogeneity in the configuration of the intracortical canals of the femoral shaft. Calcif Tissue Int 97(4):327–335. https://doi.org/10.1007/s00223-015-0014-5

    Article  CAS  Google Scholar 

  24. Beingessner DM, Dunning CE, Stacpoole RA, Johnson JA, King GJ (2007) The effect of coronoid fractures on elbow kinematics and stability. Clin Biomech (Bristol, Avon) 22(2):183–190. https://doi.org/10.1016/j.clinbiomech.2006.09.007

    Article  Google Scholar 

  25. Closkey RF, Goode JR, Kirschenbaum D, Cody RP (2000) The role of the coronoid process in elbow stability. A biomechanical analysis of axial loading. J Bone Joint Surg Am 82-A (12):1749–1753

  26. Pollock JW, Brownhill J, Ferreira L, McDonald CP, Johnson J, King G (2009) The effect of anteromedial facet fractures of the coronoid and lateral collateral ligament injury on elbow stability and kinematics. J Bone Joint Surg Am 91(6):1448–1458. https://doi.org/10.2106/JBJS.H.00222

    Article  Google Scholar 

  27. Mellema JJ, Doornberg JN, Dyer GS, Ring D (2014) Distribution of coronoid fracture lines by specific patterns of traumatic elbow instability. J Hand Surg 39(10):2041–2046

    Article  Google Scholar 

  28. O’driscoll S, Jupiter J, Cohen M, Ring D, McKee M (2003) Difficult elbow fractures: pearls and pitfalls. Instr Course Lect 52:113–134

    Google Scholar 

  29. O’Driscoll SW, Jupiter JB, King GJ, Hotchkiss RN, Morrey BF (2001) The unstable elbow. Instr Course Lect 50:89–102

    CAS  Google Scholar 

  30. Court-Brown C, Aitken S, Forward D, O’Toole R (2010) The epidemiology of fractures. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  31. Tassani S, Perilli E (2013) On local micro-architecture analysis of trabecular bone in three dimensions. Int Orthop 37(8):1645–1646. https://doi.org/10.1007/s00264-013-1989-z

    Article  Google Scholar 

  32. Perilli E, Briggs AM, Kantor S, Codrington J, Wark JD, Parkinson IH, Fazzalari NL (2012) Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT. Bone 50(6):1416–1425. https://doi.org/10.1016/j.bone.2012.03.002

    Article  Google Scholar 

  33. Perilli E, Baruffaldi F, Visentin M, Bordini B, Traina F, Cappello A, Viceconti M (2007) MicroCT examination of human bone specimens: effects of polymethylmethacrylate embedding on structural parameters. J Microsc 225(Pt 2):192–200. https://doi.org/10.1111/j.1365-2818.2007.01731.x

    Article  CAS  Google Scholar 

  34. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610. https://doi.org/10.1002/jbmr.5650020617

    Article  CAS  Google Scholar 

  35. Perilli E, Baruffaldi F, Bisi MC, Cristofolini L, Cappello A (2006) A physical phantom for the calibration of three-dimensional X-ray microtomography examination. J Microsc 222(Pt 2):124–134. https://doi.org/10.1111/j.1365-2818.2006.01580.x

    Article  CAS  Google Scholar 

  36. Hildebrand T, Ruegsegger P (1997) Quantification of Bone Microarchitecture with the Structure Model Index. Comput Methods Biomech Biomed Engin 1(1):15–23. https://doi.org/10.1080/01495739708936692

    Article  Google Scholar 

  37. Doheny EP, Lowery MM, Fitzpatrick DP, O’Malley MJ (2008) Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles. J Electromyogr Kinesiol 18(5):760–770. https://doi.org/10.1016/j.jelekin.2007.03.006

    Article  Google Scholar 

  38. Perilli E, Baleani M, Öhman C, Fognani R, Baruffaldi F, Viceconti M (2008) Dependence of mechanical compressive strength on local variations in microarchitecture in cancellous bone of proximal human femur. J Biomech 41(2):438–446. https://doi.org/10.1016/j.jbiomech.2007.08.003

    Article  CAS  Google Scholar 

  39. Kroker A, Zhu Y, Manske SL, Barber R, Mohtadi N, Boyd SK (2017) Quantitative in vivo assessment of bone microarchitecture in the human knee using HR-pQCT. Bone 97:43–48. https://doi.org/10.1016/j.bone.2016.12.015

    Article  Google Scholar 

  40. Nishiyama KK, Shane E (2013) Clinical imaging of bone microarchitecture with HR-pQCT. Curr Osteoporos Rep 11(2):147–155. https://doi.org/10.1007/s11914-013-0142-7

    Article  Google Scholar 

  41. Schultz AB, Alexander NB, Ashton-Miller JA (1992) Biomechanical analyses of rising from a chair. J Biomech 25(12):1383–1391

    Article  CAS  Google Scholar 

  42. Gil JA, DaSilva K, Johnson E, DaSilva MF, Pidgeon TS (2020) Three-dimensional characterization of trabecular bone mineral density of the proximal ulna using quantitative computed tomography. J Shoulder Elbow Surg 29(4):755–760. https://doi.org/10.1016/j.jse.2019.09.040

    Article  Google Scholar 

  43. Regan W, Morrey BF (1992) Classification and treatment of coronoid process fractures. Orthopedics 15(7):845–848

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ray Last Anatomy Laboratory at The University of Adelaide for the provision of cadaveric bone specimens, Adelaide Microscopy for providing access to the micro-CT system, Dr. Marco Palanca for the help and valuable suggestions, The International Society of Arthroscopy, Knee Surgery and Orthopedic Sports Medicine (ISAKOS) for covering the costs of micro-CT imaging.

Funding

This study was funded by the International Society of Arthroscopy, Knee Surgery and Orthopaedic Sports Medicine (ISAKOS) to cover the costs of micro-CT imaging.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jetske Viveen.

Ethics declarations

Conflict of interest

Author #1 received an unrestricted Research Grant from the Marti-Keuning-Eckhardt Foundation, Jo Kolk Foundation and Michael-van Vloten Foundation. Author #5 received an unrestricted Postdoc Research Grant from the Marti-Keuning-Eckhardt Foundation. Other authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viveen, J., Perilli, E., Zahrooni, S. et al. Three-dimensional cortical and trabecular bone microstructure of the proximal ulna. Arch Orthop Trauma Surg 143, 213–223 (2023). https://doi.org/10.1007/s00402-021-04023-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-021-04023-7

Keywords

Navigation