Skip to main content

Advertisement

Log in

Retaining or excising the supraspinatus tendon in complex proximal humeral fractures treated with reverse prosthesis: a biomechanical analysis in two different designs

  • Trauma Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Purpose

We aimed to biomechanically evaluate the effect of the supraspinatus tendon on tuberosity stability using two different reverse shoulder arthroplasty (RSA) models for complex proximal humeral fractures (PHFs).

Methods

Four-part proximal humeral fractures were simulated in 20 cadaveric shoulders. Two different RSA designs were implemented: a glenosphere-medialized model and a glenosphere-lateralized model. Tuberosities were reconstructed, and displacement of bony fragments was measured (mm) by placing three sensors: in the humeral diaphysis (D), in the greater tuberosity (GT), and in the lesser tuberosity (LT). Axial forces were induced and measured in Newton (N). The test was performed twice in each specimen, with and without the supraspinatus tendon. The regression line (RL) was measured in mm/N.

Results

In the medialized model, the GT–D displacement was greater in the supraspinatus preserving model than that in the tendon excision model (p < 0.001), as well as for the LT–D displacement (p < 0.001). In the lateralized model, GT–D displacement and GT–LT distance were greater in the preserving model than that in the excision model (p < 0.001, p = 0.04).

Conclusion

The supraspinatus tendon resection leads to a more biomechanically stable tuberosity construct when performing RSA for PHFs, while the rest of the rotator cuff tendons (infraspinatus and teres minor) are retained in the greater tuberosity.

Level of evidence

Basic science study. Cadaveric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acevedo DC, Mann T, Abboud JA, Getz C, Baumhauer JF, Voloshin I (2014) Reverse total shoulder arthroplasty for the treatment of proximal humeral fractures: patterns of use among newly trained orthopedic surgeons. J Shoulder Elbow Surg 23:1363–1367. https://doi.org/10.1016/j.jse.2014.01.005

    Article  PubMed  Google Scholar 

  2. Bufquin T, Hersan A, Hubert L, Massin P (2007) Reverse shoulder arthroplasty for the treatment of three-and four-part fractures of the proximal humerus in the elderly a prospective review of 43 cases with a short-term follow-up. J Bone Joint Surg [Br] 89:516–520. https://doi.org/10.1302/0301-620X.89B4.18435

    Article  CAS  Google Scholar 

  3. Sebastiá-Forcada E, Cebrián-Gomez R, Lizaur-Utrilla A, Gil-Guillen V (2014) Reverse shoulder arthroplasty versus hemiarthroplasty for acute proximal humeral fractures. A blinded, randomized, controlled, prospective study. J Shoulder Elbow 23:1419–1426. https://doi.org/10.1016/j.jse.2014.06.035

    Article  Google Scholar 

  4. Boileau P, Watkinson DJ, Hatzidakis AM, Balg F (2005) Grammont reverse prosthesis: design, rationale, and biomechanics. J Shoulder Elbow Surg 14:147–161. https://doi.org/10.1016/j.jse.2004.10.006

    Article  Google Scholar 

  5. Grammont PM, Trouilloud P, Laffay JPDX (1987) Etude et realisation d’une novelle prothese d’epaule. Rhumatologie 39:17–22

    Google Scholar 

  6. Cuff D, Pupello D, Virani N, Levy JFM (2008) Reverse shoulder arthroplasty for the treatment of rotator cuff deficiency. J Bone Joint Surg Am 90:1244–1251. https://doi.org/10.2106/JBJS.G.00775

    Article  PubMed  Google Scholar 

  7. Gutierrez S, Levy JC, Lee WE 3rd, Keller TSMM (2007) Center of rotation affects abduction range of motion of reverse shoulder arthropl. Clin Orthop Relat Res 458:78–82. https://doi.org/10.1097/BLO.0b013e31803d0f57

    Article  PubMed  Google Scholar 

  8. Boileau P, Moineau G, Roussanne YOK (2011) Bony increased-offset reversed shoulder arthroplasty: minimizing scapular impingement while maximizing glenoid fixation. Clin Orthop Relat Res 469:2558–2567. https://doi.org/10.1007/s11999-011-1775-4

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cazeneuve JF, Cristofari DJ (2010) The reverse shoulder prosthesis in the treatment of fractures of the proximal humerus in the elderly. J Bone Joint Surg 92B:535–539. https://doi.org/10.1302/0301-620X.92B4.22450

    Article  Google Scholar 

  10. Boileau P, Pennington SD, Alami G (2011) Proximal humeral fractures in younger patients: fixation techniques and arthroplasty. J Shoulder Elbow Surg 20:47–60. https://doi.org/10.1016/j.jse.2010.12.006

    Article  Google Scholar 

  11. Formaini NT, Everding NG, Levy JC, Rosas S (2015) Tuberosity healing after reverse shoulder arthroplasty for acute proximal humerus fractures: the “black and tan” technique. J Shoulder Elbow Surg 24:299–306. https://doi.org/10.1016/j.jse.2015.04.014

    Article  Google Scholar 

  12. Gallinet D, Adam A, Gasse N, Rochet S, Obert L (2013) Improvement in shoulder rotation in complex shoulder fractures treated by reverse shoulder arthroplasty. J Shoulder Elbow Surg 22:38–44. https://doi.org/10.1016/j.jse.2012.03.011

    Article  PubMed  Google Scholar 

  13. Uzer G, Yildiz F, Batar S, Binlaksar R, Elmadag M, Kus G, Bilsel K (2017) Does grafting of the tuberosities improve the functional outcomes of proximal humeral fractures treated with reverse shoulder arthroplasty? J Shoulder Elbow Surg 26:36–41. https://doi.org/10.1016/j.jse.2016.05.005

    Article  PubMed  Google Scholar 

  14. Chun Y-M, Kim D-S, Lee D-H, Shin S-J (2017) Reverse shoulder arthroplasty for four-part proximal humerus fracture in elderly patients: can a healed tuberosity improve the functional outcomes? J Shoulder Elbow Surg 26:1216–1221. https://doi.org/10.1016/j.jse.2016.11.034

    Article  PubMed  Google Scholar 

  15. Frankle MA, Ondrovic LE, Markee BA, Harris ML, Iii WEL (2001) Stability of tuberosity reattachment in proximal humeral hemiarthroplasty. J Shoulder Elbow Surg 11:413–420. https://doi.org/10.1067/mse.2002.126098

    Article  Google Scholar 

  16. Frankle MA, Greenwald DP, Markee BA, Ondrovic LE, Lee WE (2001) Biomechanical effects of malposition of tuberosity fragments on the humeral prosthetic reconstruction for four-part proximal humerus fractures. J Shoulder Elbow Surg 10:321–326. https://doi.org/10.1067/mse.2001.113962

    Article  CAS  PubMed  Google Scholar 

  17. Gulotta LV, Choi D, Marinello P, Knutson Z, Lipman J, Wright T et al (2012) Humeral component retroversion in reverse total shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 21:1121–1127. https://doi.org/10.1016/j.jse.2011.07.027

    Article  PubMed  Google Scholar 

  18. Chaffin DB, Andersson GBJ, Martin BJ (1999) Occupational biomechanics. Wiley, New York

    Google Scholar 

  19. Burkhart SS, Johnson TC, Wirth MA, Athanasiou KA (1997) Cyclic loading of transosseous rotator cuff repairs: tension overload as a possible cause of failure. Arthroscopy 13:172

    Article  CAS  Google Scholar 

  20. Grassi FA, Zorzolo I (2014) Reverse shoulder arthroplasty without subscapularis repair for the treatment of proximal humeral fractures in the elderly. Musculoskelet Surg 98:5–13. https://doi.org/10.1007/s12306-014-0321-4

    Article  PubMed  Google Scholar 

  21. Anakwenze OA, Zoller S, Ahmad CS, Levine WN (2014) Reverse shoulder arthroplasty for acute proximal humerus fractures: a systematic review. J Shoulder Elbow Surg 23:73–80. https://doi.org/10.1016/j.jse.2013.09.012

    Article  Google Scholar 

  22. Levy JCBB (2011) Reverse shoulder prosthesis for acute four-part fracture: tuberosity fixation using a horseshoe graft. J Orthop Trauma 25:318–324. https://doi.org/10.1097/BOT.0b013e3181f22088

    Article  PubMed  Google Scholar 

  23. Hoenecke HR, Flores-Hernandez C, D’Lima DD (2014) Reverse total shoulder arthroplasty component center of rotation affects muscle function. J Shoulder Elbow Surg 23:1128–1135. https://doi.org/10.1016/j.jse.2013.11.025

    Article  PubMed  Google Scholar 

  24. Giles JW, Langohr GDG, Johnson JA, Athwal GS (2016) The rotator cuff muscles are antagonists after reverse total shoulder arthroplasty. J Shoulder Elbow Surg 25:1592–1600. https://doi.org/10.1016/j.jse.2016.02.028

    Article  PubMed  Google Scholar 

  25. Giles JW, Langohr GDG, Johnson JAAG (2015) Implant design variations in reverse total shoulder arthroplasty influence the required deltoid force and resultant joint load. Clin Orthop Relat Res 473:3615–3626. https://doi.org/10.1007/s11999-015-4526-0

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Miquel.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miquel, J., Santana, F., Palau, E. et al. Retaining or excising the supraspinatus tendon in complex proximal humeral fractures treated with reverse prosthesis: a biomechanical analysis in two different designs. Arch Orthop Trauma Surg 138, 1533–1539 (2018). https://doi.org/10.1007/s00402-018-3016-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-018-3016-8

Keywords

Navigation