Skip to main content
Log in

Comparison of periprosthetic bone remodelling after implantation of anatomic and straight stem prostheses in total hip arthroplasty

  • Orthopaedic Surgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

Total hip arthroplasty changes bone loading conditions in the proximal femur and induces adaptive remodelling of the periprosthetic bone. These remodelling processes depend on many implant-specific qualities, e.g. material and elasticity of the stem. The objective of this study was to investigate the effect of the stem design on periprosthetic bone remodelling after insertion of an anatomic stem with proximal fixation and the direct comparison to a straight stem prosthesis.

Materials and methods

In a prospective study, the changes in periprosthetic bone mineral density (BMD) after implantation of 68 CTX-S anatomic and 22 PPF straight stem prostheses were assessed in the first post-operative year by means of DEXA and zone analysis by Gruen (Clin Orthop 141:17–27, 1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening.. Furthermore all patients with CTX-S prostheses were monitored in the second post-operative year. The correlation of adaptive bone remodelling and the systemic bone density was also investigated.

Results

In the distal one-third of the straight stem prosthesis, a clearly greater, although not significant, hypertrophy of the periprosthetic bone was observed. No differences in the extent of bone loss between the two prostheses in the regions of interest (ROI) of the proximal bone were observed. The greatest decrease in BMD was registered in the medial femoral neck in both groups. Bone atrophy decreased progressively as the ROI moved distally, ending in a slight increase in BMD in the distal ROI. No significant changes in periprosthetic BMD occurred in the second post-operative year. A strong positive correlation in the regions with the greatest BMD decrease with the systemic BMD was ascertained.

Conclusion

After implanting a CTX-S prosthesis, as opposed to PPF prostheses, a different pattern of periprosthetic bone remodelling with a slighter hypertrophy of the distal periprosthetic parts was observed. This implies that the extensive proximal, more physiological bone loading of the anatomic stem as well as the removal of less bone while implanting the stem reduces the negative effects of unphysiological strain distribution and stress shielding. The BMD loss in the medial proximal neck cannot be avoided with this stem design either. The lack of significant BMD changes in the second post-operative year suggests that a stabilisation of bone remodelling processes occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arabmotlagh M, Hennings T, Rittmeister M (2003) Periprothetischer Knochenumbau am proximalen Femur nach Implantation von Individual- und Standard-Hüftendoprothesen. Z Orthop Ihre Grenzgeb 141:519–525

    Article  PubMed  CAS  Google Scholar 

  2. Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE (1990) The effect of stem stiffness on femoral bone resorption after canine porous-coated total hip arthroplasty. Clin Orthop 261:196–213

    PubMed  Google Scholar 

  3. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding. Clin Orthop 274:79–96

    PubMed  Google Scholar 

  4. Bohatyrewicz A, Mazurkiewicz H, Dabkowska E, Larysz D, Zietek P, Gusta A (1999) Factors influencing bone mineral density around the femoral stem after cementless total hip arthroplasty. Chir Narzadow Ruchu Ortop Pol 64(4):415–421

    PubMed  CAS  Google Scholar 

  5. Broos P, Fourneau I (2000) Host factors that affect outcome of total hip arthroplasty. Lancet 355(9214):1479–1480

    Article  PubMed  CAS  Google Scholar 

  6. Cicciotti MG, Rothman RH, Hozack WJ, Moriarty L (1994) Clinical and roentgenographic evaluation of hydroxyapatite-augmented and nonaugmented porous total hip arthroplasty. J Arthroplasty 9(6):631–639

    Article  Google Scholar 

  7. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231:7–28

    PubMed  Google Scholar 

  8. Engh CA, McGovern TF, Bobyn JD, Harris WH (1992) A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J Bone Joint Surg 74-A:1009–1020

    Google Scholar 

  9. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  10. Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL Cupples LA, Wilson PWF, Kiel DP (2000) Risk factors for longitudinal bone loss in elderly men and women: Framingham osteoporosis study. J Bone Miner Res 4:710–720

    Article  Google Scholar 

  11. Harris WH (1968) Traumatic arthritis of the hip after dislocation and acetabular fractures: treatment by mold arthroplasty. An end-result study using a new method of result evaluation. J Bone Joint Surg Am 51:737–755

    Google Scholar 

  12. Hennigs T, Arabmotlagh M, Skripitz R, Zichner L (2000) Risikofaktor für periprothetischen Knochenschwund: Perioperative DEXA-Messung der LWS für Planung und Prophylaxe in der Hüftendoprothetik. Osteologie 9(Suppl 1):74

    Google Scholar 

  13. Hughes SS, Furia JP, Smith P, Pellegrini V (1995) Atrophy of the proximal part of the femur after total hip arthroplasty without cement. J Bone Joint Surg Am 77:231–239

    PubMed  CAS  Google Scholar 

  14. Jones CD, Laval-Jeantet AM, Laval-Jeantet MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8(4):201–206

    Article  PubMed  CAS  Google Scholar 

  15. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RW (1993) Dual energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. J Bone Joint Surg Br 75-B:279–287

    Google Scholar 

  16. Kiratli BJ, Checovich MM, McBeath AA, Wilson MA, Heiner JP (1996) Measurement of bone mineral density by dual energy X-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 2:184–193

    Google Scholar 

  17. Kusz D, Wojciechowski P, Wojcik K, Kaleta M (1999) Early results of densitometry around cementless stem of Parhofer-Mönch hip endoprosthesis. Chir Narzadow Ruchu Ortop Pol 64(5):497–503

    PubMed  CAS  Google Scholar 

  18. Malchau H, Herberts P, Ahnfelt L (1993) Prognosis of total hip replacemet in Sweden. Acta Orthop Scand 64:497–506

    PubMed  CAS  Google Scholar 

  19. Marchetti ME, Steinberg GG, Greene JM, Jenis LG, Baran DT (1996) A prospective study of proximal femur bone mass following cemented and uncemented hip artroplasty. J Bone Miner Res 11:1033–1039

    Article  PubMed  CAS  Google Scholar 

  20. Martini F, Lebherz C, Mayer F, Leichtle U, Kremling E, Sell S (2000) Precision of the measurements of periprosthetic bone mineral density in hips with a custom-made femoral stem. J Bone Joint Surg Br 82:1065–1071

    Article  PubMed  CAS  Google Scholar 

  21. McCarthy CK, Steinberg GG, Agren M, Leahey D, Baran DT (1991) Quantyfying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg Br 73:774–778

    PubMed  CAS  Google Scholar 

  22. Nakamura K (1996) Measurement of periprosthetic bone mineral density after cementless hip arthroplasty by dual energy X-ray absorptiometry: longitudinal and cross-sectional evaluation. J Orthop Sci 1:113–122

    Article  Google Scholar 

  23. Nevitt MC, Lane NE, Scott JS, Hochberg MC, Pressmann AR, Genant HK, Cummings SR (1995) Radiographic osteoarthritis of the hip and bone mineral density. Arthritis Rheum 38:907–916

    Article  PubMed  CAS  Google Scholar 

  24. Niinimaki T, Jalovaara P (1995) Bone loss from the proximal femur after arthroplasty with an isoelastic femoral stem. Acta Orthop Scand 66(4):347–351

    Article  PubMed  CAS  Google Scholar 

  25. Niinimaki T, Junila J, Jalovaara P (2001) A proximal fixed anatomic femoral stem reduces stress shielding. Int Orthop 25(2):85–88

    Article  PubMed  CAS  Google Scholar 

  26. Nishii T, Sugano N, Masuhara K, Shibuya T, Ochi T, Tamura S (1997) Longitudinal evaluation of time related bone remodeling after cementless total hip arthroplasty. Clin Ortop 339:121–131

    Article  Google Scholar 

  27. Ochsner PE (2002) Die Hüfttotalprothese. Springer, Berlin

    Google Scholar 

  28. Okano T, Hagino H, Otsuka T, Teshima R, Yamamoto K, Hirano Y, Nakamura K (2002) Measurement of periprosthetic bone mineral density by dual energy X-ray absorptiometry is useful for estimating fixation between the bone and the prosthesis in an early stage. J Arthroplasty 17(1):49–55

    Article  PubMed  CAS  Google Scholar 

  29. Park YS, Lee JL, Yun SH, Jung MW, Oh I (2003) Comparison of hydroxyapatite- and porous-coated stems in total hip replacement. Acta Orthop Scand 74(3):259–263

    Article  PubMed  Google Scholar 

  30. Petersen MB, Kolthoff N, Eiken P (1995) Bone mineral density around femoral stems. Acta Orthop Scand 66(5):432–434

    PubMed  CAS  Google Scholar 

  31. Pritchett JW (1995) Femoral bone loss following hip replacement. Clin Orthop Relat Res 314:156–161

    PubMed  Google Scholar 

  32. Starker M, Thümler P, Weipert A, Hanusek S (2000) Computergestützte Prothesenauswahl und Implantationskontrolle. Orthopäde Springer 29:627–635

    CAS  Google Scholar 

  33. Sychterz CJ, Engh CA (1996) The influence of clinical factors on periprosthetic bone remodelling. Clin Orthop 322:285–292

    PubMed  Google Scholar 

  34. Venesmaa PK, Kroger HP, Jurvelin JS, Miettinen HJ, Suomaliainen OT, Alhava EM (2001) Monitoring of periprosthetic BMD after uncemented total hip arthroplasty with dual energy X-ray absorptiometry—a 3-year follow-up study. J Bone Miner Res 16(6):1056–1061

    Article  PubMed  CAS  Google Scholar 

  35. Venesmaa PK, Kroger HP, Jurvelin JS, Miettinen HJ, Suomaliainen OT, Alhava EM (2003) Periprosthetic bone loss after cemented total hip arthroplasty. Acta Orthop Scand 74(1):31–36

    Article  PubMed  Google Scholar 

  36. Yamaguchi K, Masuhara K, Ohzono K, Sugano N, Nishii T, Ochi T (2000) Evaluation of periprosthetic bone-remodelling after cementless total hip arthroplasty. J Bone Joint Surg 82-A(10):1426–1431

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the Department of Orthopedic Surgery, the University Hospital of Frankfurt, Frankfurt am Main for their help with this study. The conduction of the study complies with the current laws of the country in which it was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kurth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grochola, L.F., Habermann, B., Mastrodomenico, N. et al. Comparison of periprosthetic bone remodelling after implantation of anatomic and straight stem prostheses in total hip arthroplasty. Arch Orthop Trauma Surg 128, 383–392 (2008). https://doi.org/10.1007/s00402-007-0507-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-007-0507-4

Keywords

Navigation